Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1755-1776, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318972

RESUMO

The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Folhas de Planta , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Morfogênese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457256

RESUMO

Nyctinastic leaf movement of Fabaceae is driven by the tiny motor organ pulvinus located at the base of the leaf or leaflet. Despite the increased understanding of the essential role of ELONGATED PETIOLULE1 (ELP1)/PETIOLE LIKE PULVINUS (PLP) orthologs in determining pulvinus identity in legumes, key regulatory components and molecular mechanisms underlying this movement remain largely unclear. Here, we used WT pulvinus and the equivalent tissue in the elp1 mutant to carry out transcriptome and proteome experiments. The omics data indicated that there are multiple cell biological processes altered at the gene expression and protein abundance level during the pulvinus development. In addition, comparative analysis of different leaf tissues provided clues to illuminate the possible common primordium between pulvinus and petiole, as well as the function of ELP1. Furthermore, the auxin pathway, cell wall composition and chloroplast distribution were altered in elp1 mutants, verifying their important roles in pulvinus development. This study provides a comprehensive insight into the motor organ of the model legume Medicago truncatula and further supplies a rich dataset to facilitate the identification of novel players involved in nyctinastic movement.


Assuntos
Medicago truncatula , Pulvínulo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
3.
New Phytol ; 230(2): 475-484, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458826

RESUMO

In most legumes, two typical features found in leaves are diverse compound forms and the pulvinus-driven nyctinastic movement. Many genes have been identified for leaf-shape determination, but the underlying nature of leaf movement as well as its association with the compound form remains largely unknown. Using forward-genetic screening and whole-genome resequencing, we found that two allelic mutants of Medicago truncatula with unclosed leaflets at night were impaired in MtDWARF4A (MtDWF4A), a gene encoding a cytochrome P450 protein orthologous to Arabidopsis DWARF4. The mtdwf4a mutant also had a mild brassinosteroid (BR)-deficient phenotype bearing pulvini without significant deficiency in organ identity. Both mtdwf4a and dwf4 could be fully rescued by MtDWF4A, and mtdwf4a could close their leaflets at night after the application of exogenous 24-epi-BL. Surgical experiments and genetic analysis of double mutants revealed that the failure to exhibit leaf movement in mtdwf4a is a consequence of the physical obstruction of the overlapping leaflet laminae, suggesting a proper geometry of leaflets is important for their movement in M. truncatula. These observations provide a novel insight into the nyctinastic movement of compound leaves, shedding light on the importance of open space for organ movements in plants.


Assuntos
Medicago truncatula , Pulvínulo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
4.
J Exp Bot ; 72(5): 1822-1835, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33277994

RESUMO

Plant-specific WOX family transcription factors play important roles ranging from embryogenesis to lateral organ development. The WOX1 transcription factors, which belong to the modern clade of the WOX family, are known to regulate outgrowth of the leaf blade specifically in the mediolateral axis; however, the role of WOX1 in compound leaf development remains unknown. Phylogenetic analysis of the whole WOX family in tomato (Solanum lycopersicum) indicates that there are 10 members that represent the modern, intermediate, and ancient clades. Using phylogenetic analysis and a reverse genetic approach, in this study we identified SlLAM1 in the modern clade and examined its function and tissue-specific expression pattern. We found that knocking out SlLAM1 via CRISPR/Cas9-mediated genome editing led to narrow leaves and a reduced number of secondary leaflets. Overexpression of tomato SlLAM1 could rescue the defects of the tobacco lam1 mutant. Anatomical and transcriptomic analyses demonstrated that floral organ development, fruit size, secondary leaflet initiation, and leaf complexity were altered due to loss-of-function of SlLAM1. These findings demonstrate that tomato SlLAM1 plays an important role in the regulation of secondary leaflet initiation, in addition to its conserved function in blade expansion.


Assuntos
Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Exp Bot ; 72(8): 2995-3011, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33506247

RESUMO

The size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1), which encodes an F-box protein SMALL LEAF AND BUSHY1 (SLB1) recently reported to control lateral branching in Medicago truncatula, was identified as a key regulator of organ size. We show that loss-of-function of MIO1/SLB1 severely reduced organ size. Conversely, plants overexpressing MIO1/SLB1 had enlarged organs. Cellular analysis revealed that MIO1/SLB1 controlled organ size mainly by modulating primary cell proliferation during the early stages of leaf development. Biochemical analysis revealed that MIO1/SLB1 could form part of SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex, to target BIG SEEDS1 (BS1), a repressor of primary cell division, for degradation. Interestingly, we found that MIO1/SLB1 also played a key role in pulvinus development and leaf movement by modulating cell proliferation of the pulvinus as leaves developed. Our study not only demonstrates a conserved role of MIO1/SLB1 in the control of organ size in legumes, but also sheds light on the novel function of MIO1/SLB1 in leaf movement.


Assuntos
Proteínas F-Box , Medicago truncatula , Proteínas de Plantas , Proteínas Culina/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Tamanho do Órgão , Folhas de Planta , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
New Phytol ; 227(2): 613-628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170762

RESUMO

In species with compound leaves, the positions of leaflet primordium initiation are associated with local peaks of auxin accumulation. However, the role of auxin during the late developmental stages and outgrowth of compound leaves remains largely unknown. Using genome resequencing approaches, we identified insertion sites at four alleles of the LATERAL LEAFLET SUPPRESSION1 (LLS1) gene, encoding the auxin biosynthetic enzyme YUCCA1 in Medicago truncatula. Linkage analysis and complementation tests showed that the lls1 mutant phenotypes were caused by the Tnt1 insertions that disrupted the LLS1 gene. The transcripts of LLS1 can be detected in primordia at early stages of leaf initiation and later in the basal regions of leaflets, and finally in vein tissues at late leaf developmental stages. Vein numbers and auxin content are reduced in the lls1-1 mutant. Analysis of the lls1 sgl1 and lls1 palm1 double mutants revealed that SGL1 is epistatic to LLS1, and LLS1 works with PALM1 in an independent pathway to regulate the growth of lateral leaflets. Our work demonstrates that the YUCCA1/YUCCA4 subgroup plays very important roles in the outgrowth of lateral leaflets during compound leaf development of M. truncatula, in addition to leaf venation.


Assuntos
Medicago truncatula , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Ácidos Indolacéticos , Medicago truncatula/genética , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Exp Bot ; 71(20): 6355-6365, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964922

RESUMO

Optimizing plant architecture is an efficient approach for breeders to increase crop yields, and phytohormones such as gibberellins (GAs) play an important role in controlling growth. Medicago truncatula is a model legume species, but the molecular mechanisms underlying its architecture are largely unknown. In this study, we examined a tobacco retrotransposon Tnt1-tagged mutant collection of M. truncatula and identified dwarf and increased branching 1 (dib1), which exhibited extreme dwarfism and increased numbers of lateral branches. By analysis of the flanking sequences of Tnt1 insertions in different alleles of the tagged lines, we were able to clone DIB1. Linkage analysis and reverse screening of the flanking-sequence tags identified Medtr2g102570 as the gene corresponding to the DIB1 locus in the dib1 loss-of-function mutants. Phylogenetic analysis indicated that DIB1 was the ortholog of PsGA3ox1/Le in Pisum sativum. Expression analysis using a GUS-staining reporter line showed that DIB1 was expressed in the root apex, pods, and immature seeds. Endogenous GA4 concentrations were markedly decreased whilst some of representative GA biosynthetic enzymes were up-regulated in the dib1 mutant. In addition, exogenous application of GA3 rescued the dib1 mutant phenotypes. Overall, our results suggest that DIB1 controls plant height and axillary bud outgrowth via an influence on the biosynthesis of bioactive GAs. DIB1 could therefore be a good candidate gene for breeders to optimize plant architecture for crop improvement.


Assuntos
Medicago truncatula , Regulação da Expressão Gênica de Plantas , Giberelinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674471

RESUMO

Plant height is a vital agronomic trait that greatly determines crop yields because of the close relationship between plant height and lodging resistance. Legumes play a unique role in the worldwide agriculture; however, little attention has been given to the molecular basis of their height. Here, we characterized the first dwarf mutant mini plant 1 (mnp1) of the model legume plant Medicago truncatula. Our study found that both cell length and the cell number of internodes were reduced in a mnp1 mutant. Using the forward genetic screening and subsequent whole-genome resequencing approach, we cloned the MNP1 gene and found that it encodes a putative copalyl diphosphate synthase (CPS) implicated in the first step of gibberellin (GA) biosynthesis. MNP1 was highly homologous to Pisum sativum LS. The subcellular localization showed that MNP1 was located in the chloroplast. Further analysis indicated that GA3 could significantly restore the plant height of mnp1-1, and expression of MNP1 in a cps1 mutant of Arabidopsis partially rescued its mini-plant phenotype, indicating the conservation function of MNP1 in GA biosynthesis. Our results provide valuable information for understanding the genetic regulation of plant height in M. truncatula.


Assuntos
Genes de Plantas/genética , Medicago truncatula/genética , Alquil e Aril Transferases/genética , Arabidopsis/genética , Cloroplastos/genética , Clonagem Molecular/métodos , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Pisum sativum/genética , Fenótipo , Proteínas de Plantas/genética
9.
Comput Struct Biotechnol J ; 21: 1989-1994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950220

RESUMO

Long non-coding RNAs (lncRNAs) have been verified as flexible and important factors in various biological processes of multicellular eukaryotes, including plants. The respective intricate crosstalk among multiple epigenetic modifications has been examined to some extent. However, only a small proportion of lncRNAs has been functionally well characterized. Moreover, the relationship between lncRNAs and other epigenetic modifications has not been systematically studied. In this mini-review, we briefly summarize the representative biological functions of lncRNAs in developmental programs and environmental responses in plants. In addition, we particularly discuss the intimate relationship between lncRNAs and other epigenetic modifications, and we outline the underlying avenues and challenges for future research on plant lncRNAs.

10.
Nat Plants ; 6(5): 511-521, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32393879

RESUMO

Compound leaves show more complex patterns than simple leaves, and this is mainly because of a specific morphogenetic process (leaflet initiation and arrangement) that occurs during their development. How the relevant morphogenetic activity is established and modulated to form a proper pattern of leaflets is a central question. Here we show that the trifoliate leaf pattern of the model leguminous plant Medicago truncatula is controlled by the BEL1-like homeodomain protein PINNATE-LIKE PENTAFOLIATA1 (PINNA1). We identify PINNA1 as a determinacy factor during leaf morphogenesis that directly represses transcription of the LEAFY (LFY) orthologue SINGLE LEAFLET1 (SGL1), which encodes an indeterminacy factor key to the morphogenetic activity maintenance. PINNA1 functions alone in the terminal leaflet region and synergizes with another determinacy factor, the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), in the lateral leaflet regions to define the spatiotemporal expression of SGL1, leading to an elaborate control of morphogenetic activity. This study reveals a framework for trifoliate leaf-pattern formation and sheds light on mechanisms generating diverse leaf forms.


Assuntos
Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Hibridização In Situ , Medicago truncatula/anatomia & histologia , Medicago truncatula/crescimento & desenvolvimento , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA