Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7902): 631-636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322249

RESUMO

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

2.
Small ; 17(45): e2103400, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569143

RESUMO

Strongly bound excitons are a characteristic hallmark of 2D semiconductors, enabling unique light-matter interactions and novel optical applications. Platinum diselenide (PtSe2 ) is an emerging 2D material with outstanding optical and electrical properties and excellent air stability. Bulk PtSe2 is a semimetal, but its atomically thin form shows a semiconducting phase with the appearance of a band-gap, making one expect strongly bound 2D excitons. However, the excitons in PtSe2 have been barely studied, either experimentally or theoretically. Here, the authors directly observe and theoretically confirm excitons and their ultrafast dynamics in mono-, bi-, and tri-layer PtSe2 single crystals. Steady-state optical microscopy reveals exciton absorption resonances and their thickness dependence, confirmed by first-principles calculations. Ultrafast transient absorption microscopy finds that the exciton dominates the transient broadband response, resulting from strong exciton bleaching and renormalized band-gap-induced exciton shifting. The overall transient spectrum redshifts with increasing thickness as the shrinking band-gap redshifts the exciton resonance. This study provides novel insights into exciton photophysics in platinum dichalcogenides.


Assuntos
Platina , Semicondutores , Ácido Hipocloroso , Microscopia
3.
Nano Lett ; 20(10): 7413-7421, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924501

RESUMO

Nanoframe alloy structures represent a class of high-performance catalysts for the oxygen reduction reaction (ORR), owing to their high active surface area, efficient molecular accessibility, and nanoconfinement effect. However, structural and chemical instabilities of nanoframes remain an important challenge. Here, we report the synthesis of PtCu nanoframes constructed with an atomically ordered intermetallic structure (O-PtCuNF/C) showing high ORR activity, durability, and chemical stability. We rationally designed the O-PtCuNF/C catalyst by combining theoretical composition predictions with a silica-coating-mediated synthesis. The O-PtCuNF/C combines intensified strain and ligand effects from the intermetallic PtCu L11 structure and advantages of the nanoframes, resulting in superior ORR activity to disordered alloy PtCu nanoframes (D-PtCuNF/C) and commercial Pt/C catalysts. Importantly, the O-PtCuNF/C showed the highest ORR mass activity among PtCu-based catalysts. Furthermore, the O-PtCuNF/C exhibited higher ORR durability and far less etching of constituent atoms than D-PtCuNF/C and Pt/C, attesting to the chemically stable nature of the intermetallic structure.

4.
Angew Chem Int Ed Engl ; 60(3): 1323-1331, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33026162

RESUMO

MFI type zeolites with 10-membered-ring pores (ca. 0.55 nm) have the ability to separate p-xylene (ca. 0.58 nm) from its bulkier isomers. Here, we introduced non-zeolitic micropores (ca. 0.6-1.5 nm) and mesopores (ca. 2-7 nm) to a conventional microporous MFI type zeolite membrane, yielding an unprecedented hierarchical membrane structure. The uniform, embedded non-zeolitic pores decreased defect formation considerably and facilitated molecular transport, resulting in high p-xylene perm-selectivity and molar flux. Specifically, compared to a conventional, crack network-containing MFI membranes of similar thickness (ca. 1 µm), the mesoporous MFI membranes showed almost double p-xylene permeance (ca. 1.6±0.4×10-7  mol m-2 s-1 Pa-1 ) and a high p-/o-xylene separation factor (ca. 53.8±7.3 vs. 3.5±0.5 in the conventional MFI membrane) at 225 °C. The embedded non-zeolitic pores allowed for decreasing the separation performance degradation, which was apparently related to coke formation.

5.
J Am Chem Soc ; 141(45): 18256-18263, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621315

RESUMO

The free energy of H adsorption (ΔGH) on a metallic catalyst has been taken as a descriptor to predict the hydrogen evolution reaction (HER) kinetics but has not been well applied in alkaline media. To assess this, we prepare Pd@Pt and PdH@Pt core-shell octahedra enclosed by Pt(111) facets as model catalysts for controlling the ΔGH affected by the ligand, the strain, and their ensemble effects. The Pt shell thickness is adjusted from 1 to 5 atomic layers by varying the amount of Pt precursor added during synthesis. In an alkaline electrolyte, the HER activity of core-shell models is improved either by the construction of core-shell structures or by the increased number of Pt shells. These experimental results are in good agreement with the ΔGH values calculated by the first-principles density functional theory with a complex surface strained core-shell slab model. However, enhanced HER activities of Pd@Pt and PdH@Pt core-shell nanocrystals over the Pt catalyst are inconsistent with the thermodynamic ΔGH scaling relationship only but can be explained by the work function and apparent ΔGH models that predict the interfacial electric field for the HER.

6.
Nano Lett ; 18(8): 4866-4870, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29969564

RESUMO

We investigated the atomic structure of inclined threading edge dislocation (TED) typically observed in GaN grown on Si(111) through (scanning) transmission electron microscopy. Atomic observations verified that the inclined TED consisted of two partial dislocations. These results imply that the inclined TED possesses a Ga-Ga atomic configuration that is energetically unfavorable. However, the introduction of such structures is considered unavoidable because the TEDs should climb regularly to mediate the applied stress or the increasing surface due to the buffer layer. This Ga-Ga configuration is highly likely to form metallic bonds and appears to be the primary reason for the inferior efficacy of a GaN light-emitting diode grown on Si(111).

7.
Nano Lett ; 18(5): 2930-2936, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634282

RESUMO

Pt-based nanoframe catalysts have been explored extensively due to their superior activity toward the oxygen reduction reaction (ORR). Herein, we report the synthesis of Pt-Ni multiframes, which exhibit the unique structure of tightly fused multiple nanoframes and reinforced by an embedded dendrite. Rapid reduction and deposition of Ni atoms on Pt-Ni nanodendrites induce the alloying/dealloying of Pt and Ni in the overall nanostructures. After chemical etching of Ni, the newly formed dendrite-embedded Pt-Ni multiframes show an electrochemically active surface area (ECSA) of 73.4 m2 gPt-1 and a mass ORR activity of 1.51 A mgPt-1 at 0.93 V, which is 30-fold higher than that of the state-of-the-art Pt/C catalyst. We suggest that high ECSA and ORR performances of dendrite-embedded Pt-Ni multiframes/C can be attributed to the porous nanostructure and numerous active sites exposed on surface grain boundaries and high-indexed facets.

8.
Angew Chem Int Ed Engl ; 58(51): 18654-18662, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31591796

RESUMO

The secondary growth methodology to form zeolite membranes has stringent requirements for homogeneous epitaxial intergrowth of the seed layer and limits the number of accessible high-quality zeolite membranes. Despite previous reports on hetero-epitaxial growth, high-performance zeolite membranes have yet to be reported using this approach. Here, the successful hetero-epitaxial growth of highly siliceous ZSM-58 (DDR-type zeolite) films from a SSZ-13 (CHA-type zeolite) seed layer is reported. The resulting membranes show excellent CO2 perm-selectivities, having maximum CO2 /N2 and CO2 /CH4 separation factors (SFs) as high as about 17 and 279, respectively, at 30 °C. Furthermore, the hybrid membrane maintains the CO2 perm-selectivity in the presence of water vapor (the third main component in both cases), that is, CO2 /N2 SF of about 14 and CO2 /CH4 SF of about 78, respectively, at 50 °C (a representative temperature of both CO2 -containing streams).

9.
Small ; 14(3)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29171686

RESUMO

The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni3 Cox @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru4+ ) species, which can be modulated by the core compositions.

10.
Chemistry ; 24(69): 18444-18454, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30133021

RESUMO

The electrochemical reduction of carbon dioxide (CO2 ) to value-added products is a promising approach to reducing excess CO2 in the atmosphere. However, the development of electrocatalysts for highly selective and efficient electrochemical CO2 reduction has been challenging because protons are usually easier to reduce than CO2 in an aqueous electrolyte. Recently, single-atom catalysts (SACs) have been suggested as candidate CO2 reduction catalysts due to their unique catalytic properties. To prepare single-atom metal active sites, the stabilization of metal atoms over conductive supports such as graphene sheets to prevent metal aggregation is crucial. To address this issue, a facile method was developed to prepare single-atom nickel active sites on reduced graphene oxide (RGO) sheets for the selective production of carbon monoxide (CO) from CO2 . The tris(2-benzimidazolylmethyl)amine (NTB) ligand was introduced as a linker that can homogeneously disperse nickel atoms on the graphene oxide (GO) sheets. Because the NTB ligands form strong interactions with the GO sheets by π-π interactions and with nickel ions by ligation, they can effectively stabilize nickel ions on GO sheets by forming Ni(NTB)-GO complexes. High-temperature annealing of Ni(NTB)-GO under inert atmosphere produces nickel- and nitrogen-doped reduced graphene oxide sheets (Ni-N-RGO) with single-atom Ni-N4 active sites. Ni-N-RGO shows high CO2 reduction selectivity in the reduction of CO2 to CO with 97 % faradaic efficiency at -0.8 V vs. RHE (reversible hydrogen electrode).

11.
Small ; 13(29)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594433

RESUMO

The development of Pt-free electrocatalysts for the hydrogen evolution reaction (HER) recently is a focus of great interest. While several strategies are developed to control the structural properties of non-Pt catalysts and boost their electrocatalytic activities for the HER, the generation of highly reactive defects or interfaces by combining a metal with other metals, or with metal oxides/sulfides, can lead to notably enhanced catalytic performance. Herein, the preparation of cactus-like hollow Cu2-x S@Ru nanoplates (NPs) that contain metal/metal sulfide heterojunctions and show excellent catalytic activity and durability for the HER in alkaline media is reported. The initial formation of Ru islands on presynthesized Cu1.94 S NPs, via cation exchange between three Cu+ ions and one Ru3+ , induces the growth of the Ru phase, which is concomitant with the dissolution of the Cu1.94 S nanotemplate, culminating in the formation of a hollow nanostructure with numerous thin Ru pillars. Hollow Cu2-x S@Ru NPs exhibit a small overpotential of 82 mV at a current density of -10 mA cm-2 and a low Tafel slope of 48 mV dec-1 under alkaline conditions; this catalyst is among state-of-the-art HER electrocatalysts in alkaline media. The excellent performance of hollow Cu2-x S@Ru NPs originates from the facile dissociation of water in the Volmer step.

12.
Small ; 12(41): 5728-5733, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27572500

RESUMO

Nanostructured copper sulfides, promising earth-abundant p-type semiconductors, have found applications in a wide range of fields due to their versatility, tunable low bandgap, and environmental sustainability. The synthesis of hexagonal Cu7 S4 @Au2 S@Au nanorings exhibiting plasmon enhanced emissions at the direct bandgap is reported. The synthesized Cu7 S4 @Au2 S@Au nanorings show greatly enhanced absorption and emission by local plasmons compared to pure copper sulfide nanoparticles.

13.
Environ Sci Technol ; 48(24): 14828-36, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25479409

RESUMO

Chabazite (CHA) zeolites with a pore size of 0.37 × 0.42 nm(2) are expected to separate CO2 (0.33 nm) from larger N2 (0.364 nm) in postcombustion flue gases by recognizing their minute size differences. Furthermore, the hydrophobic siliceous constituent in CHA membranes can allow for maintaining the CO2/N2 separation performance in the presence of H2O in contrast with the CO2 affinity-based membranes. In an attempt to increase the molecular sieving ability, the pore mouth size of all silica CHA (Si-CHA) particles was reduced via the chemical vapor deposition (CVD) of a silica precursor (tetraethyl orthosilicate). Accordingly, an increase of the CVD treatment duration decreased the penetration rate of CO2 into the CVD-treated Si-CHA particles. Furthermore, the CVD process was applied to siliceous CHA membranes in order to improve their CO2/N2 separation performance. Compared to the intact CHA membranes, the CO2/N2 maximum separation factor (max SF) for CVD-treated CHA membranes was increased by ∼ 2 fold under dry conditions. More desirably, the CO2/N2 max SF was increased by ∼ 3 fold under wet conditions at ∼ 50 °C, a representative temperature of the flue gas stream. In fact, the presence of H2O in the feed disfavored the permeation of N2 more than that of CO2 through CVD-modified CHA membranes and thus, contributed to the increased CO2/N2 separation factor.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Zeolitas/química , Sequestro de Carbono , Membranas Artificiais , Nitrogênio/química , Porosidade , Dióxido de Silício/química , Temperatura
14.
ACS Nano ; 18(24): 15705-15715, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848500

RESUMO

Nanostructured high-/medium-entropy compounds have emerged as important catalytic materials for energy conversion technologies, but complex thermodynamic relationships involved with the element mixing enthalpy have been a considerable roadblock to the formation of stable single-phase structures. Cation exchange reactions (CERs), in particular with copper sulfide templates, have been extensively investigated for the synthesis of multicomponent heteronanoparticles with unconventional structural features. Because copper cations within the host copper sulfide templates are stoichiometrically released with incoming foreign cations in CERs to maintain the overall charge balance, the complete absence of Cu cations in the nanocrystals after initial CERs would mean that further compositional variation would not be possible by subsequent CERs. Herin, we successfully retained a portion of Cu cations within the silver sulfide (Ag2S) and gold sulfide (Au2S) phases of Janus Cu2-xS-M2S (M = Ag, Au) nanocrystals after the CERs, by partially suppressing the transformation of the anion sublattice that inevitably occurs during the introduction of external cations. Interestingly, the subsequent CERs on Janus Cu1.81S-M2S (M = Ag, Au), by utilizing the remnant Cu cations, allowed the construction of Janus Cu1.81S-AgxAuyS, which preserved the initial heterointerface. The synthetic strategy described in this work to suppress the complete removal of the Cu cation from the template could fabricate the CER-driven heterostructures with greatly diversified compositions, which exhibit unusual optical and catalytic properties.

15.
Nat Commun ; 15(1): 3887, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719801

RESUMO

In the early 2000s, low dimensional ferroelectric systems were predicted to have topologically nontrivial polar structures, such as vortices or skyrmions, depending on mechanical or electrical boundary conditions. A few variants of these structures have been experimentally observed in thin film model systems, where they are engineered by balancing electrostatic charge and elastic distortion energies. However, the measurement and classification of topological textures for general ferroelectric nanostructures have remained elusive, as it requires mapping the local polarization at the atomic scale in three dimensions. Here we unveil topological polar structures in ferroelectric BaTiO3 nanoparticles via atomic electron tomography, which enables us to reconstruct the full three-dimensional arrangement of cation atoms at an individual atom level. Our three-dimensional polarization maps reveal clear topological orderings, along with evidence of size-dependent topological transitions from a single vortex structure to multiple vortices, consistent with theoretical predictions. The discovery of the predicted topological polar ordering in nanoscale ferroelectrics, independent of epitaxial strain, widens the research perspective and offers potential for practical applications utilizing contact-free switchable toroidal moments.

16.
Appl Microsc ; 53(1): 9, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37731139

RESUMO

The structural analysis of nanocrystals via transmission electron microscopy (TEM) is a valuable technique for the material science field. Recently, two-dimensional images by scanning TEM (STEM) and energy-dispersive X-ray spectroscopy (EDS) have successfully extended to three-dimensional (3D) imaging by tomography. However, despite improving TEM instruments and measurement techniques, detector shadowing, the missing-wedge problem, X-ray absorption effects, etc., significant challenges still remain; therefore, the various required corrections should be considered and applied when performing quantitative tomography. Nonetheless, this 3D reconstruction technique can facilitate active site analysis and the development of nanocatalyst systems, such as water electrolysis and fuel cell. Herein, we present a 3D reconstruction technique to obtain tomograms of IrNi rhombic dodecahedral nanoframes (IrNi-RFs) from STEM and EDS images by applying simultaneous iterative reconstruction technique and total variation minimization algorithms. From characterizing the morphology and spatial chemical composition of the Ir and Ni atoms in the nanoframes, we were able to infer the origin of the physical and catalytic durability of IrNi-RFs. Also, by calculating the surface area and volume of the 3D reconstructed model, we were able to quantify the Ir-to-Ni composition ratio and compare it to the EDS measurement result.

17.
Micron ; 172: 103487, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285687

RESUMO

Using a monochromator in transmission electron microscopy, a low-energy-loss spectrum can provide inter- and intra-band transition information for nanoscale devices with high energy and spatial resolutions. However, some losses, such as Cherenkov radiation, phonon scattering, and surface plasmon resonance superimposed at zero-loss peak, make it asymmetric. These pose limitations to the direct interpretation of optical properties, such as complex dielectric function and bandgap onset in the raw electron energy-loss spectra. This study demonstrates measuring the dielectric function of germanium telluride using an off-axis electron energy-loss spectroscopy method. The interband transition from the measured complex dielectric function agrees with the calculated band structure of germanium telluride. In addition, we compare the zero-loss subtraction models and propose a reliable routine for bandgap measurement from raw valence electron energy-loss spectra. Using the proposed method, the direct bandgap of germanium telluride thin film was measured from the low-energy-loss spectrum in transmission electron microscopy. The result is in good agreement with the bandgap energy measured using an optical method.

18.
Adv Sci (Weinh) ; 10(23): e2302906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271888

RESUMO

Metal-halide perovskite nanocrystals (NCs) have emerged as suitable light-emitting materials for light-emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment-induced and ion-migration-induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques. Herein, a highly bright and durable deep-blue perovskite LED (PeLED) formed by hermetically sealing perovskite NCs with epitaxial ZnS shells is reported. This shell protects the perovskite NCs from the environment, facilitates charge injection/transport, and effectively suppresses interparticle ion migration during the LED operation, resulting in exceptional brightness (2916 cd m-2 ) at 451 nm and a high external quantum efficiency of 1.32%. Furthermore, even in the unencapsulated state, the LED shows a long operational lifetime (T50 ) of 1192 s (≈20 min) in the air. These results demonstrate that the epitaxial and hermetic encapsulation of perovskite NCs is a powerful strategy for fabricating high-performance deep-blue-emitting PeLEDs.

19.
Adv Mater ; 35(32): e2300200, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154173

RESUMO

Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, vertically aligned nanostructure (VAN) films using a self-assembling bottom-up deposition method presents great promise in terms of structural flexibility and property tunability. Here, the bottom-up self-assembly is extended to a new approach using a mixture containing a 2Dlayer-by-layer film growth, followed by a 3D VAN film growth. In this work, the two-phase nanocomposite thin films are based on LaAlO3 :LaBO3 , grown on a lattice-mismatched SrTiO3001 (001) single crystal. The 2D-to-3D transient structural assembly is primarily controlled by the composition ratio, leading to the coexistence of multiple interfacial properties, 2D electron gas, and magnetic anisotropy. This approach provides multidimensional film heterostructures which enrich the emergent phenomena for multifunctional applications.

20.
Small Methods ; 6(1): e2101236, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041273

RESUMO

Designing an efficient and durable electrocatalyst for the sluggish oxygen evolution reaction (OER) at the anode remains the foremost challenge in developing proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable cactus-like nanoparticle with an exposed heterointerface between the IrO2 and the low oxidation state Ru by introducing a trace amount of Mn dopant is reported. The heterostructure fabrication relies on initial mixing of the Ru and Ir phases before electrochemical oxidation to produce a conjoined Ru/IrO2 heterointerface. Benefitting from electron transfer at the heterointerface, the low oxidation state Ru species shows excellent initial activity, which is maintained even after 180 h of continuous OER test. In a half-cell test, the Mn-doped RuIr nanocactus (Mn-RuIr NCT) achieves a mass activity of 1.85 A mgIr+Ru -1 at 1.48 VRHE , which is 139-fold higher than that of commercial IrO2 . Moreover, the superior electrocatalytic performance of Mn-RuIr NCT in the PEM electrolysis system ensures its viability in practical uses. The results of the excellent catalytic performance for acidic OER indicate that the heterostructuring robust rutile IrO2 and the highly active Ru species with a low oxidation state on the catalyst surface drive a synergistic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA