Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Environ Health Res ; : 1-14, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37879627

RESUMO

In the present study, magnesium nanoparticles (Mg NPs) were synthesized utilizing an aqueous extract of Berberis aristate rhizome and evaluated for antimicrobial and anti-inflammatory activity. Technofunctional properties of rhizome powder were evaluated and during thermal stability evaluation four stages of decomposition with a maximum delta Y value of 76.04 % was observed. Optimization of Mg NPs was carried out by employing eight different concentrations (C1-C8) and the C4 showed maximum absorbance at 330 nm confirming the NPs synthesis. The Mg NPs showed the particle size of 62 nm, zeta potential of -24.7 mV and hexagonal mprphology. Potential inhibition against S. aureus and E. coli (76.78 ± 0.05% and 74.62 ± 0.17%)and anti-inflammatory activity ranging from 42.43 ± 0.07-82.92 ± 0.04% was observed for Mg NPs. Therefore, green synthesis of Mg NPs is a promising approach for the development ofbiological active NPs to cure microbial infections.

2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430568

RESUMO

Yersiniosis, caused by Yersinia enterocolitica, is the third most rampant zoonotic disease in Europe; the pathogen shows high antibiotic resistance. Herbs have multiple anti-microbial components that reduce microorganism resistance. Therefore, an extract of Picrorhiza kurroa (P. kurroa) was evaluated for potential antimicrobial activity. We report that the ethanolic extract of P. kurroa showed effective antimicrobial activity (zone of inhibition: 29.8 mm, Minimum inhibitory concentration (MIC): 2.45 mg/mL, minimum bactericidal concentration (MBC): 2.4 mg/mL) against Yersinia enterocolitica. Potential bioactive compounds from P. kurroa were identified using LC-MS, namely, cerberidol, annonidine A, benzyl formate, picroside-1, and furcatoside A. P. kurroa showed effective antimicrobial potential in skim milk at different pH, acidity, and water activity levels. P. kurroa affected the physiology of Yersinia enterocolitica and reduced the number of live cells. Yersinia enterocolitica, when incubated with P. kurroa extract, showed lower toxin production. Picroside-1 was isolated and showed higher antimicrobial potential in comparison to the standard antibiotic. Picroside-1 lysed the Yersinia enterocolitica cells, as observed under scanning electron microscopy. Docking revealed that picroside-1 (ligand) showed both hydrophilic and hydrophobic interactions with the dihydrofolate reductase (DHFR) protein of Yersinia enterocolitica and that DHFR is a possible drug target. The high activity and natural origin of Picroside-1 justify its potential as a possible drug candidate for Yersinia enterocolitica.


Assuntos
Anti-Infecciosos , Picrorhiza , Yersinia enterocolitica , Picrorhiza/química , Picrorhiza/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
3.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014591

RESUMO

Pea (Pisum sativum) is an important source of nutritional components and is rich in protein, starch, and fiber. Pea protein is considered a high-quality protein and a functional ingredient in the global industry due to its low allergenicity, high protein content, availability, affordability, and deriving from a sustainable crop. Moreover, pea protein has excellent functional properties such as solubility, water, and oil holding capacity, emulsion ability, gelation, and viscosity. Therefore, these functional properties make pea protein a promising ingredient in the food industry. Furthermore, several extraction techniques are used to obtain pea protein isolate and concentrate, including dry fractionation, wet fractionation, salt extraction, and mild fractionation methods. Dry fractionation is chemical-free, has no loss of native functionality, no water use, and is cost-effective, but the protein purity is comparatively low compared to wet extraction. Pea protein can be used as a food emulsifier, encapsulating material, a biodegradable natural polymer, and also in cereals, bakery, dairy, and meat products. Therefore, in this review, we detail the key properties related to extraction techniques, chemistry, and structure, functional properties, and modification techniques, along with their suitable application and health attributes.


Assuntos
Proteínas de Ervilha , Fibras na Dieta , Indústria Alimentícia , Pisum sativum/química , Amido
4.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502504

RESUMO

In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas/uso terapêutico , Nanotecnologia/métodos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas Metálicas/química , Metais , Óxidos/farmacologia
5.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948345

RESUMO

Functional properties and biological activities of plant-derived polyphenolic compounds have gained great interest due to their epidemiologically proven health benefits and diverse industrial applications in the food and pharmaceutical industry. Moreover, the food processing conditions and certain chemical reactions such as pigmentation, acylation, hydroxylation, and glycosylation can also cause alteration in the stability, antioxidant activity, and structural characteristics of the polyphenolic compounds. Since the (poly)phenols are highly reactive, to overcome these problems, the formulation of a complex of polyphenolic compounds with natural biopolymers is an effective approach. Besides, to increase the bioavailability and bioaccessibility of polyphenolic compounds, milk proteins such as whey protein concentrate, sodium caseinate, and milk protein concentrate act as natural vehicles, due to their specific structural and functional properties with high nutritional value. Therefore, milk proteins are suitable for the delivery of polyphenols to parts of the gastrointestinal tract. Therefore, this review reports on types of (poly)phenols, methods for the analysis of binding interactions between (poly)phenols-milk proteins, and structural changes that occur during the interaction.


Assuntos
Manipulação de Alimentos , Proteínas do Leite/química , Polifenóis/química , Disponibilidade Biológica , Caseínas , Polifenóis/farmacocinética
6.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299584

RESUMO

Currently, the potential utilization of fruits and vegetable waste as a source of micronutrients and antioxidants has increased. The present study, therefore, aimed to determine the antimicrobial and anti-inflammatory activities of Citrus nobilis peel extract. A modified solvent evaporation technique was employed for peel extract preparation. For effective utilization of the natural product, quantitative analysis of phenolic compounds was carried out using liquid chromatography and mass spectroscopy technique. Phenolic and flavonoids were present in high amounts, while ß-carotene and lycopene were present in vestigial amounts. The antimicrobial efficiency of peel extract was evaluated against four bacterial strains including Staphylococcus aureus (MTCC 3160), Klebsiella pneumoniae (MTCC 3384), Pseudomonas aeruginosa (MTCC 2295), and Salmonella typhimurium (MTCC 1254), and one fungal strain Candida albicans (MTCC 183), and zone of inhibition was comparable to the positive control streptomycin and amphotericin B, respectively. The extract of Citrus nobilis peels showed effective anti-inflammatory activity during human red blood cell membrane stabilization (HRBC) and albumin denaturation assay. The extracts also exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity ranging from 53.46 to 81.13%. Therefore, the obtained results suggest that Citrus nobilis peel could be used as an excellent source of polyphenols and transformed into value-added products.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Citrus/química , Membrana Eritrocítica/metabolismo , Frutas/química , Metanol/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antioxidantes/química , Humanos , Extratos Vegetais/química
7.
Prep Biochem Biotechnol ; 51(4): 340-349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32907479

RESUMO

The current research was led to assess the influence of solid-state fermentation (SSF) with Aspergillus oryzae (MTCC 3107) on polyphenols, antioxidant activities, and proximate composition from peanut press cake of variety HNG-10. Total phenolic, flavonoid, and tannin contents were calculated for polyphenols quantification whereas DPPH, ABTS, FRAP, and metal chelating assay were performed for antioxidant activity. Quantification of polyphenols was confirmed by High Performance Liquid Chromatography technique. Maximum value of total phenolic, flavonoid, and tannin content was found to be 25.55 µM/g GAE, 101.17 µM/g QE, and 245.33 µg/g TAE, respectively. The highest inhibition of free radicals scavenging was noticed on the 5th day of fermentation after that decreased gradually with the increase of fermentation time. Significant increase in fat, i.e. 7.05-12.80% and protein content i.e. 44.05-49.60% was observed. Significant difference in proximate composition of fermented and non-fermented press cake concluded that the progressive role of fermentation improved or transformed physico-chemical properties of substrates.


Assuntos
Antioxidantes/análise , Arachis/química , Arachis/metabolismo , Aspergillus oryzae/metabolismo , Fermentação , Extratos Vegetais/análise , Polifenóis/análise , Sementes/química , Sementes/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Sequestradores de Radicais Livres/metabolismo , Proteínas/análise , Taninos/análise
8.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885782

RESUMO

Currently, the potential utilization of natural plant-derived extracts for medicinal and therapeutic purposes has increased remarkably. The current study, therefore, aimed to assess the antimicrobial and anti-inflammatory activity of modified solvent evaporation-assisted ethanolic extract of Woodfordia fruticosa flowers. For viable use of the extract, qualitative analysis of phytochemicals and their identification was carried out by gas chromatography-mass spectroscopy. Analysis revealed that phenolic (65.62 ± 0.05 mg/g), flavonoid (62.82 ± 0.07 mg/g), and ascorbic acid (52.46 ± 0.1 mg/g) components were present in high amounts, while ß-carotene (62.92 ± 0.02 µg/mg) and lycopene (60.42 ± 0.8 µg/mg) were present in lower amounts. The antimicrobial proficiency of modified solvent-assisted extract was evaluated against four pathogenic bacterial and one fungal strain, namely Staphylococcusaureus (MTCC 3160), Klebsiellapneumoniae (MTCC 3384), Pseudomonasaeruginosa (MTCC 2295), and Salmonellatyphimurium (MTCC 1254), and Candidaalbicans (MTCC 183), respectively. The zone of inhibition was comparable to antibiotics streptomycin and amphotericin were used as a positive control for pathogenic bacterial and fungal strains. The extract showed significantly higher (p < 0.05) anti-inflammatory activity during the albumin denaturation assay (43.56-86.59%) and HRBC membrane stabilization assay (43.62-87.69%). The extract showed significantly (p < 0.05) higher DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay and the obtained results are comparable with BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene) with percentage inhibitions of 82.46%, 83.34%, and 84.23%, respectively. Therefore, the obtained results concluded that ethanolic extract of Woodfordia fruticosa flowers could be utilized as a magnificent source of phenols used for the manufacturing of value-added food products.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Etanol/química , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Woodfordia/química , Animais , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antioxidantes/análise , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Galinhas , Diclofenaco/farmacologia , Fungos/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Solventes/química
9.
J Food Sci Technol ; 58(9): 3328-3337, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34366450

RESUMO

In the present study, we compared vacuum microwave oven drying Vacuum Oven Drying (VOD) and modified solvent evaporation (MSE) assisted methanolic mushroom extracts for their antimicrobial and anti-inflammatory efficacy. MSE extract showed significantly (p < 0.05) higher total phenolic content (64.4 mg/g) followed by flavonoid content (20.62 mg/g), ascorbic acid (17.54 mg/g), ß-carotene content (12.52 mg/g), and lycopene (9.57 mg/g) content than that of VOD extract. MSE showed a significantly (p < 0.05) higher zone of inhibition against all selected microorganisms as compared to VOD extract. During the time-kill study, the MSE extract inhibited significantly (p < 0.05) higher growth of Staphylococcus aureus followed by Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli than that of VOD extract. Also, MSE extract showed significantly (p < 0.05) higher anti-inflammatory activity in comparison with VOD extract during the Human Red Blood Cell (HRBC) membrane stabilization test and albumin denaturation test. MSE extract revealed significantly (p < 0.05) higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) and N2O2 scavenging assay than that of VOD extract, however, statistically, MSE extract showed comparable results with Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT). During the characterization of the selected extract, Fourier transform infrared spectroscopy confirmed the functional groups of the flavonoid content, ascorbic acid, ß-carotene, and lycopene. Quantitative analysis of gallic acid (54.32 mg/g) and rutin content (14.80 mg/g) was revealed using a high-pressure liquid chromatogram.

10.
J Am Coll Nutr ; 39(7): 628-635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32255407

RESUMO

Objective:Citrullus vulgaris seeds are the most concealed oil seeds consist of vital therapeutic potential. Apart from nutritional and therapeutic indices, these seeds contain numerous anti-nutritional components.Method: Hence, solid-state fermentation was used as an alternative biotechnological contrivance to enhance the nutritional and functional properties of seeds. Fungal strain Aspergillus awamori was used for solid-state fermentation and uncoated watermelon seeds were used as a substrate for 144h. The range of bulk density was obtained from 0.39 to 0.72 g/cm3, however, fermentation significantly decreased the bulk density of the seed flours. Based upon soluble nitrogen content (79.81%) and functional properties, fermented seed samples of 120h was selected for FTIR analysis and in-vitro mineral bioavailability through Caco-2 cells.Results: FTIR spectrum confirmed the presence of amide groups (1200-1100 cm-1) of the protein.Conclusion: Fermented seeds also unveiled significantly (p<0.05) higher iron (61.24%), zinc (62.36%), and calcium (61.89%) bioavailability and this significant increase in bioavailability confirmed significantly (p<0.05) higher cellular mineral uptake.


Assuntos
Citrullus , Aspergillus , Células CACO-2 , Fermentação , Humanos , Minerais , Sementes
11.
Food Chem Toxicol ; : 115038, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39384093

RESUMO

Emerging micropollutants, originating from diverse sources, including pharmaceutical, pesticides, and industrial effluents, are a serious environmental concern. Their presence in natural water bodies has negative effects on ecosystems and human health. To address this issue, the importance of a source-controlled approach has grown, highlighting the use of advanced technologies such as oxidation processes, membrane filtration, and adsorption to prevent micropollutants from entering the environment. Therefore, this review provides a comprehensive overview of emerging micropollutants, their analytical detection methods, and their environmental impacts, with a focus on aquatic ecosystems, human health, and terrestrial environments. It also highlights the importance of using a source-controlled approach and provides insights into the benefits and drawbacks of this strategy. The primary micropollutants identified in this review were erythromycin, ibuprofen, and triclocarban, originating from the pharmaceutical industries for their use as antibiotics, analgesic, and antibacterial drugs. The primary analytical methods used for detection involved hybrid techniques that integrate chromatography with spectroscopy. Thus, this review emphasizes the source-controlled approach's benefits and drawbacks, focusing on emerging micropollutants, their detection, and impacts on ecosystems and health.

12.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823903

RESUMO

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Assuntos
Conservação de Alimentos , Produtos da Carne , Mucilagem Vegetal , Sementes , Sementes/química , Produtos da Carne/análise , Mucilagem Vegetal/química , Conservação de Alimentos/métodos , Linho/química , Biopolímeros/química , Polissacarídeos/química , Animais , Psyllium/química , Manipulação de Alimentos/métodos
13.
Food Sci Nutr ; 12(7): 5188-5200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055197

RESUMO

This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.

14.
Food Chem ; 445: 138671, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367556

RESUMO

Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.


Assuntos
Aminoácidos , Cicer , Aminoácidos/metabolismo , Cicer/química , Proteínas/metabolismo , Solubilidade , Água/metabolismo
15.
Food Sci Nutr ; 12(5): 3150-3163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726405

RESUMO

Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.

16.
Int J Biol Macromol ; 267(Pt 1): 131431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593896

RESUMO

In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.


Assuntos
Aloe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos , Galactanos/química , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Aloe/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Substitutos da Gordura/química , Candida albicans/efeitos dos fármacos , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química
17.
Int J Biol Macromol ; 268(Pt 1): 131687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642692

RESUMO

In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).


Assuntos
Celulose , Embalagem de Alimentos , Poliésteres , Embalagem de Alimentos/métodos , Celulose/química , Poliésteres/química , Gomas Vegetais/química
18.
Int J Biol Macromol ; 271(Pt 2): 132688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806080

RESUMO

Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.


Assuntos
Gomas Vegetais , Gomas Vegetais/química , Sistemas de Liberação de Medicamentos , Humanos
19.
Biologics ; 18: 285-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372887

RESUMO

Introduction: This study aims to systematically assess the anticancer potential of distinct Lactobacillus strains on Human Colorectal Tumor (HCT) 115 cancer cells, with a primary focus on the apoptotic mechanisms involved. Lactobacillus strains were isolated from sheep milk and underwent a meticulous microbial isolation process. Previous research indicates that certain probiotic bacteria, including Lactobacillus species, may exhibit anticancer properties through mechanisms such as apoptosis induction. However, there is limited understanding of how different Lactobacillus strains exert these effects on cancer cells and the underlying molecular pathways involved. Methods: Cytotoxicity was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and exposure durations of Lactobacillus cell-free lyophilized filtrates. Additional apoptotic features were characterized using 4.6-diamidino-2-phenylindole (DAPI) analysis for nuclear fragmentation and Annexin V/PI analysis for apoptosis quantification. Genetic analysis explored the modulation of apoptotic proteins (Bax and Bcl2) in response to Lactobacillus treatment. Whole-genome sequencing (WGS) was performed to understand the genetic makeup of the Lactobacillus strains used in the study. Results: The study demonstrated a significant reduction in HCT 115 cell viability, particularly with L. plantarum, as evidenced by Sulforhodamine B (SRB) and MTT assays. DAPI analysis revealed nuclear fragmentation, emphasizing an apoptotic cell death mechanism. Annexin V/PI analysis supported this, showing a higher percentage of early and late apoptosis in L. plantarum-treated cells. Genetic analysis uncovered up-regulation of pro-apoptotic protein Bax and down-regulation of anti-apoptotic protein Bcl2 in response to Lactobacillus treatment. WGS study revealed a strain reported to NCBI PRJNA439183. Discussion: L. plantarum emerged as a potent antiproliferative agent against HCT 115 cancer cells, inducing apoptosis through intricate molecular mechanisms. This study underscores the scientific basis for L. plantarum's potential role in cancer therapeutics, highlighting its impact on antiproliferation, adhesion, and gene-protein regulation. Further research is warranted to elucidate the specific molecular pathways involved and to evaluate the therapeutic potential of L. plantarum in preclinical and clinical settings.

20.
Food Chem ; 460(Pt 1): 140401, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39033640

RESUMO

The study evaluates the interaction between Calocybe indica mushroom polyphenols (phenolic acid) and kidney bean protein (KBPM), aiming to enhance vegan food quality. The mushrooms exhibited a carbohydrate content of 3.65%, an antioxidant activity of 55.04 ± 0.17%, and a phenolic content of 4.86 mg GAE/g. Caffeic and cinnamic acids were identified through high-pressure liquid chromatography. Various concentrations of KBPM were tested at phenolic acid concentrations of 0.025, 0.050, 0.1, 0.2, 0.4, 0.8, and 1%, among these, KBPM 0.2 demonstrated the highest binding efficiency of 99.40 ± 0.05%. Notably, this complex improved the protein's functional properties, such as solubility by 11.43%, water and oil holding capacities by 10.62% and 22.04%, and emulsion capacity and stability by 3.69% and 5.83%, respectively, compared to the native protein. The protein-phenolic acid complex also enhanced thermal stability, surface charge, amino acid content, and reduced particle size compared to native protein. These enhancements also improved protein digestibility and sensory attributes in a fruit-based smoothie.


Assuntos
Agaricales , Dieta Vegana , Phaseolus , Proteínas de Plantas , Agaricales/química , Hidroxibenzoatos/química , Phaseolus/química , Proteínas de Plantas/química , Emulsões , Aminoácidos/química , Ligação Proteica , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA