Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2220007120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307485

RESUMO

What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus' 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus' cloud-filled atmosphere layers at 48 to 60 km above the surface hold the main requirements for life: suitable temperatures for covalent bonds; an energy source (sunlight); and a liquid solvent. Yet, the Venus clouds are widely thought to be incapable of supporting life because the droplets are composed of concentrated liquid sulfuric acid-an aggressive solvent that is assumed to rapidly destroy most biochemicals of life on Earth. Recent work, however, demonstrates that a rich organic chemistry can evolve from simple precursor molecules seeded into concentrated sulfuric acid, a result that is corroborated by domain knowledge in industry that such chemistry leads to complex molecules, including aromatics. We aim to expand the set of molecules known to be stable in concentrated sulfuric acid. Here, we show that nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine and the "core" nucleic acid bases purine and pyrimidine, are stable in sulfuric acid in the Venus cloud temperature and sulfuric acid concentration range, using UV spectroscopy and combinations of 1D and 2D 1H 13C 15N NMR spectroscopy. The stability of nucleic acid bases in concentrated sulfuric acid advances the idea that chemistry to support life may exist in the Venus cloud particle environment.


Assuntos
Bivalves , Vênus , Adenina , Agressão , Ácidos Sulfúricos
2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930842

RESUMO

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.

5.
Nature ; 557(7703): 31, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29713065
6.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823503

RESUMO

Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.


Assuntos
Amidas/química , Produtos Biológicos/química , Organofosfonatos/química , Compostos Organofosforados/química , Fosfatos/química , Ácidos Fosfóricos/química
7.
J Nat Prod ; 81(2): 423-446, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29364663

RESUMO

Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.


Assuntos
Produtos Biológicos/química , Nitrogênio/química , Enxofre/química , Aminoácidos/química , Peptídeos/química , Proteínas/química
8.
J Mol Evol ; 81(1-2): 34-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26208881

RESUMO

The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.


Assuntos
Eucariotos/genética , Modelos Genéticos , Células Procarióticas/fisiologia , Evolução Biológica , Células Eucarióticas/fisiologia , Evolução Molecular , Regulação da Expressão Gênica , Relação Estrutura-Atividade
9.
Rejuvenation Res ; 27(3): 110-114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581429

RESUMO

This article presents the concept of Antagonistic Pathogenic Pleiotropy, in which an abnormality that causes a specific pathology can simultaneously reduce other morbidities through unrelated mechanisms, resulting in the pathology causing less morbidity or mortality than expected. The concept is illustrated by the case of essential thrombocythemia (ET). Patients with ET have substantially elevated platelets and are therefore expected to have increased thrombotic events leading to reduced life expectancy. However, patients with ET do not have reduced life expectancy. A possible explanation is that elevated platelets produce higher levels of platelet factor 4 (PF4), which has been found to reduce age-associated decline in immune and cognitive function in mice and has been suggested as a treatment for age-associated illness. The benefit of elevated PF4 is hypothesized to balance the increased morbidity from hematological causes. Searches for other indications where a well-defined pathology is not associated with concomitant reduction in overall mortality may be a route to identifying factors that could protect against, prevent, or treat chronic disease.


Assuntos
Longevidade , Fator Plaquetário 4 , Trombocitemia Essencial , Humanos , Trombocitemia Essencial/patologia , Trombocitemia Essencial/genética , Trombocitemia Essencial/sangue , Fator Plaquetário 4/metabolismo , Animais , Plaquetas/metabolismo
10.
Astrobiology ; 24(4): 371-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37306952

RESUMO

Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small, with several authors describing Venus' clouds as "uninhabitable," and that apparent signs of life there must therefore be abiotic, or artefactual. In this article, we argue that although many features of Venus can rule out the possibility that Earth life could live there, none rule out the possibility of all life based on what we know of the physical principle of life on Earth. Specifically, there is abundant energy, the energy requirements for retaining water and capturing hydrogen atoms to build biomass are not excessive, defenses against sulfuric acid are conceivable and have terrestrial precedent, and the speculative possibility that life uses concentrated sulfuric acid as a solvent instead of water remains. Metals are likely to be available in limited supply, and the radiation environment is benign. The clouds can support a biomass that could readily be detectable by future astrobiology-focused space missions from its impact on the atmosphere. Although we consider the prospects for finding life on Venus to be speculative, they are not absent. The scientific reward from finding life in such an un-Earthlike environment justifies considering how observations and missions should be designed to be capable of detecting life if it is there.


Assuntos
Vênus , Planetas , Ácidos Sulfúricos , Água
11.
Sci Rep ; 14(1): 15575, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971876

RESUMO

Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C-F bond stems from the unique physico-chemical properties of fluorine, predominantly its extreme electronegativity and strong hydration shell. We further show that the C-F bond is very hard to synthesize and when it is made by life its potential biological functions can be readily provided by alternative functional groups that are much less costly to incorporate into existing biochemistry. As a result, the overall evolutionary cost-to-benefit balance of incorporation of the C-F bond into the chemical repertoire of life is not favorable. We argue that the limitations of organofluorine chemistry are likely universal in that they do not exclusively apply to specifics of Earth's biochemistry. C-F bonds, therefore, will be rare in life beyond Earth no matter its chemical makeup.

12.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498680

RESUMO

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Assuntos
Vênus , Aminoácidos , Atmosfera/química , Solventes , Ácidos Sulfúricos/química
13.
Astrobiology ; 24(4): 343-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452176

RESUMO

Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.


Assuntos
Vênus , Exobiologia , Meio Ambiente Extraterreno , Gases/química , Atmosfera/química
14.
Life (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38792560

RESUMO

We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the "core" nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial stability studies and is the first ever to test the reactivity and structural integrity of organic molecules subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic acid bases supports the notion that the Venus cloud environment-composed of concentrated sulfuric acid-may be able to support complex organic chemicals for extended periods of time.

15.
Sci Rep ; 13(1): 13576, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604949

RESUMO

Waste gas products from technological civilizations may accumulate in an exoplanet atmosphere to detectable levels. We propose nitrogen trifluoride (NF3) and sulfur hexafluoride (SF6) as ideal technosignature gases. Earth life avoids producing or using any N-F or S-F bond-containing molecules and makes no fully fluorinated molecules with any element. NF3 and SF6 may be universal technosignatures owing to their special industrial properties, which unlike biosignature gases, are not species-dependent. Other key relevant qualities of NF3 and SF6 are: their extremely low water solubility, unique spectral features, and long atmospheric lifetimes. NF3 has no non-human sources and was absent from Earth's pre-industrial atmosphere. SF6 is released in only tiny amounts from fluorine-containing minerals, and is likely produced in only trivial amounts by volcanic eruptions. We propose a strategy to rule out SF6's abiotic source by simultaneous observations of SiF4, which is released by volcanoes in an order of magnitude higher abundance than SF6. Other fully fluorinated human-made molecules are of interest, but their chemical and spectral properties are unavailable. We summarize why life on Earth-and perhaps life elsewhere-avoids using F. We caution, however, that we cannot definitively disentangle an alien biochemistry byproduct from a technosignature gas.

16.
PLoS One ; 16(5): e0251568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984070

RESUMO

We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. The model was run 118 times to an average of 1.4∙106 'generations' each with a range of starting parameters probed the conditions under which genomes evolved a 'default style' of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active ('default on'), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated ('default off' logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a 'default off' mode.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Modelos Genéticos , Animais , Interação Gene-Ambiente , Genoma , Humanos
17.
Life (Basel) ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925658

RESUMO

The chemistry of life requires a solvent, which for life on Earth is water. Several alternative solvents have been suggested, but there is little quantitative analysis of their suitability as solvents for life. To support a novel (non-terrestrial) biochemistry, a solvent must be able to form a stable solution of a diverse set of small molecules and polymers, but must not dissolve all molecules. Here, we analyze the potential of concentrated sulfuric acid (CSA) as a solvent for biochemistry. As CSA is a highly effective solvent but a reactive substance, we focused our analysis on the stability of chemicals in sulfuric acid, using a model built from a database of kinetics of reaction of molecules with CSA. We consider the sulfuric acid clouds of Venus as a test case for this approach. The large majority of terrestrial biochemicals have half-lives of less than a second at any altitude in Venus's clouds, but three sets of human-synthesized chemicals are more stable, with average half-lives of days to weeks at the conditions around 60 km altitude on Venus. We show that sufficient chemical structural and functional diversity may be available among those stable chemicals for life that uses concentrated sulfuric acid as a solvent to be plausible. However, analysis of meteoritic chemicals and possible abiotic synthetic paths suggests that postulated paths to the origin of life on Earth are unlikely to operate in CSA. We conclude that, contrary to expectation, sulfuric acid is an interesting candidate solvent for life, but further work is needed to identify a plausible route for life to originate in it.

18.
Astrobiology ; 21(7): 765-792, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798392

RESUMO

The search for possible biosignature gases in habitable exoplanet atmospheres is accelerating, although actual observations are likely years away. This work adds isoprene, C5H8, to the roster of biosignature gases. We found that isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (CH4; ∼500 Tg/year). Unlike methane, on Earth isoprene is rapidly destroyed by oxygen-containing radicals. Although isoprene is predominantly produced by deciduous trees, isoprene production is ubiquitous to a diverse array of evolutionary distant organisms, from bacteria to plants and animals-few, if any, volatile secondary metabolites have a larger evolutionary reach. Although non-photochemical sinks of isoprene may exist, such as degradation of isoprene by life or other high deposition rates, destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star ultraviolet fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization when using James Webb Space Telescope (JWST) is only achievable with a transit signal similar or larger than that for a super-Earth-sized exoplanet transiting an M dwarf star with an H2-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ∼100 times the Earth's production rate. In this run-away scenario, isoprene will accumulate to >100 ppm, and its spectral features are detectable with ∼20 JWST transits. One caveat is that some isoprene spectral features are hard to distinguish from those of methane and also from other hydrocarbons containing the isoprene substructure. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Atmosfera , Butadienos , Gases , Hemiterpenos , Planetas
19.
Astrobiology ; 21(10): 1206-1223, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787733

RESUMO

We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.


Assuntos
Atmosfera , Meio Ambiente Extraterreno , Animais , Clima , Estágios do Ciclo de Vida , Tamanho da Partícula
20.
Astrobiology ; 21(10): 1277-1304, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283644

RESUMO

The recent candidate detection of ∼1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modeled for Venus' atmosphere before, and our work represents the first attempt to model phosphorus species in the venusian atmosphere. We thoroughly explore the potential pathways of formation of phosphine in a venusian environment, including in the planet's atmosphere, cloud and haze layers, surface, and subsurface. We investigate gas reactions, geochemical reactions, photochemistry, and other nonequilibrium processes. None of these potential phosphine production pathways is sufficient to explain the presence of ppb phosphine levels on Venus. If PH3's presence in Venus' atmosphere is confirmed, it therefore is highly likely to be the result of a process not previously considered plausible for venusian conditions. The process could be unknown geochemistry, photochemistry, or even aerial microbial life, given that on Earth phosphine is exclusively associated with anthropogenic and biological sources. The detection of phosphine adds to the complexity of chemical processes in the venusian environment and motivates in situ follow-up sampling missions to Venus. Our analysis provides a template for investigation of phosphine as a biosignature on other worlds.


Assuntos
Fosfinas , Vênus , Atmosfera , Meio Ambiente Extraterreno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA