Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 25(6): 1638-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24408954

RESUMO

Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner. Following 1 month of whisker trimming after birth, the density of dendritic protrusions increased in layer IV, but decreased in layer VI. Whisker regrowth for 1 month returned protrusion densities to comparable level of age-matched controls in layer VI, but not in layer IV. In adults, chronic sensory deprivation led to an increase in protrusion densities in layer IV, but not in layer VI. In addition, chronic pharmacological blockade of N-methyl-d-aspartate receptors (NMDARs) increased protrusion density in both layers IV and VI, which returned to the control level after 1 month of drug withdrawal. Our data reveal that different cortical layers respond to chronic sensory deprivation in different ways, with more pronounced effects during developmental critical periods than adulthood. We also show that chronically blocking NMDARs activity during developmental critical period also influences the protrusion density and morphology in the cerebral cortex.


Assuntos
Dendritos/ultraestrutura , Pseudópodes/ultraestrutura , Células Piramidais/ultraestrutura , Privação Sensorial , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento , Vias Aferentes/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Dendritos/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Camundongos , Pseudópodes/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Coloração pela Prata , Córtex Somatossensorial/efeitos dos fármacos , Vibrissas/inervação
2.
Somatosens Mot Res ; 32(3): 177-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26043650

RESUMO

The 27th annual Barrels meeting highlighted the latest advances in this rapidly growing field. The Barrels meeting annually focuses on the role of the posterior medial thalamus in somatosensation, dendritic processing, and the cortical dynamics involved during touch perception. Speakers utilized diverse molecular, physiological, computational techniques to understand the development, sensory processing, and motor commands that are involved with the rodent mystacial vibrissae. The meeting was held Thursday, 13 November through Friday, 14 November 2014 on the Homewood campus of Johns Hopkins University, Baltimore, MD.


Assuntos
Vias Aferentes/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Animais , Baltimore , Humanos
3.
J Undergrad Neurosci Educ ; 12(1): A34-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319388

RESUMO

In a large (250 registrants) general education lecture course, neuroscience principles were taught by two professors as co-instructors, starting with simple brain anatomy, chemistry, and function, proceeding to basic brain circuits of pleasure and pain, and progressing with fellow expert professors covering relevant philosophical, artistic, marketing, and anthropological issues. With this as a base, the course wove between fields of high relevance to psychology and neuroscience, such as food addiction and preferences, drug seeking and craving, analgesic pain-inhibitory systems activated by opiates and stress, neuroeconomics, unconscious decision-making, empathy, and modern neuroscientific techniques (functional magnetic resonance imaging and event-related potentials) presented by the co-instructors and other Psychology professors. With no formal assigned textbook, all lectures were PowerPoint-based, containing links to supplemental public-domain material. PowerPoints were available on Blackboard several days before the lecture. All lectures were also video-recorded and posted that evening. The course had a Facebook page for after-class conversation and one of the co-instructors communicated directly with students on Twitter in real time during lecture to provide momentary clarification and comment. In addition to graduate student Teaching Assistants (TAs), to allow for small group discussion, ten undergraduate students who performed well in a previous class were selected to serve as discussion leaders. The Discussion Leaders met four times at strategic points over the semester with groups of 20-25 current students, and received one credit of Independent Study, thus creating a course within a course. The course grade was based on weighted scores from two multiple-choice exams and a five-page writing assignment in which each student reviewed three unique, but brief original peer-review research articles (one page each) combined with expository writing on the first and last pages. A draft of the first page, collected early in the term, was returned to each student by graduate TAs to provide individual feedback on scientific writing. Overall the course has run three times at ful or near enrollment capacity despite being held at an 8:00 AM time slot. Student-generated teaching evaluations place it well within the normal range, while this format importantly contributes to budget efficiency permitting the teaching of more required small-format courses (e.g., freshman writing). The demographics of the course have changed to one in which the vast majority of the students are now outside the disciplines of neuroscience or psychology and are taking the course to fulfill a General Education requirement. This pattern allows the wide dissemination of basic neuroscientific knowledge to a general college audience.

4.
Data Brief ; 4: 332-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26217811

RESUMO

We provide data in this article related to (C.C. Chen et al.,. Neurosci. Lett., 599 (2015) 152-157.) [1] where the expression of tissue plasminogen activator (tPA) is expressed by the whisker representation in the somatosensory cortex. Here, we provide immunocytochemistry data indicating that tPA is expressed by putative excitatory neurons as well as parvalbumin+ interneurons but not by somatostatin+ inhibitory interneurons. We also provide data showing that microglia do not normally express high levels of tPA, but upregulate their levels following cortical penetration with a recording electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA