RESUMO
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
Assuntos
Florestas , Árvores , Clima Tropical , Biodiversidade , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , África , Sudeste AsiáticoRESUMO
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , DesidrataçãoRESUMO
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologiaRESUMO
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controleRESUMO
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.
Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Clima Tropical , África , Atmosfera/química , Biomassa , Brasil , Secas , História do Século XX , História do Século XXI , Modelos Teóricos , TemperaturaRESUMO
Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.
Assuntos
Ecossistema , Florestas , Humanos , Árvores , Brasil , BiodiversidadeRESUMO
INTRODUCTION: Farm workers are at high risk for injuries, and epidemiological data are needed to plan resource allocation. OBJECTIVE: This study identified regions with high farm-related injury rates in the Barwon South West region of Victoria, Australia, for residents aged ≥50 yr. DESIGN: Retrospective synthesis using electronic medical records of emergency presentations occurring during 2017-2019 inclusive for Local Government Areas (LGA) in the study region. For each LGA, age-standardised incidence rates (per 1000 population/year) were calculated. FINDINGS: For men and women combined, there were 31 218 emergency presentations for any injury, and 1150 (3.68%) of these were farm-related. The overall age-standardised rate for farm-related injury presentations was 2.6 (95% CI 2.4-2.7); men had a higher rate than women (4.1, 95% CI 3.9-4.4 versus 1.2, 95% CI 1.0-1.3, respectively). For individual LGAs, the highest rates of farm-related emergency presentations occurred in Moyne and Southern Grampians, both rural LGAs. Approximately two-thirds of farm-related injuries occurred during work activities (65.0%), and most individuals arrived at the hospital by transport classified as "other" (including private car, 83.3%). There were also several common injury causes identified: "other animal related injury" (20.2%), "cutting, piercing object" (19.5%), "fall ⟨1 m" (13.1%), and "struck by or collision with object" (12.5%). Few injuries were caused by machinery (1.7%) and these occurred mainly in the LGA of Moyne (65%). DISCUSSION AND CONCLUSION: This study provides data to inform future research and resource allocation for the prevention of farm-related injuries.
Assuntos
Ferimentos e Lesões , Humanos , Feminino , Masculino , Vitória/epidemiologia , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Ferimentos e Lesões/epidemiologia , Fazendas/estatística & dados numéricos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Fazendeiros/estatística & dados numéricos , Traumatismos Ocupacionais/epidemiologia , IncidênciaRESUMO
In addition to degradation products, impurities, and exogenous contaminants, industries such as pharmaceutical, food, and others must concern themselves with leachables. These chemicals can derive from containers and closures or migrate from labels or secondary containers and packaging to make their way into products. Identification and quantification of extractables (potential leachables) and leachables, typically trace level analytes, is a regulatory expectation intended to ensure consumer safety and product fidelity. Mass spectrometry and related techniques have played a significant role in the analysis of extractables and leachables (E&L). This review provides an overview of how mass spectrometry is used for E&L studies, primarily in the context of the pharmaceutical industry. This review includes work flows, examples of how identification and quantification is done, and the importance of orthogonal data from several different detectors. E&L analyses are driven by the need for consumer safety. These studies are expected to expand in existing areas (e.g., food, textiles, toys, etc.) and into new, currently unregulated product areas. Thus, this topic is of interest to audiences beyond just the pharmaceutical and health care industries. Finally, the potential of universal detector approaches used in other areas is suggested as an opportunity to drive E&L research progress in this arguably understudied, under-published realm.
Assuntos
Contaminação de Medicamentos , Embalagem de Medicamentos , Espectrometria de Massas/métodos , Embalagem de Medicamentos/instrumentação , Embalagem de Medicamentos/métodos , Humanos , Espectrometria de Massas/instrumentação , Teste de Materiais , Preparações Farmacêuticas/químicaRESUMO
Offset schemes help avoid or revert habitat loss through protection of existing habitat (avoided deforestation), through the restoration of degraded areas (natural regrowth), or both. The spatial scale of an offset scheme may influence which of these 2 outcomes is favored and is an important aspect of the scheme's design. However, how spatial scale influences the trade-offs between the preservation of existing habitat and restoration of degraded areas is poorly understood. We used the largest forest offset scheme in the world, which is part of the Brazilian Forest Code, to explore how implementation at different spatial scales may affect the outcome in terms of the area of avoided deforestation and area of regrowth. We employed a numerical simulation of trade between buyers (i.e., those who need to offset past deforestation) and sellers (i.e., landowners with exceeding native vegetation) in the Brazilian Amazon to estimate potential avoided deforestation and regrowth at different spatial scales of implementation. Allowing offsets over large spatial scales led to an area of avoided deforestation 12 times greater than regrowth, whereas restricting offsets to small spatial scales led to an area of regrowth twice as large as avoided deforestation. The greatest total area (avoided deforestation and regrowth combined) was conserved when the spatial scale of the scheme was small, especially in locations that were highly deforested. To maximize conservation gains from avoided deforestation and regrowth, the design of the Brazilian forest-offset scheme should focus on restricting the spatial scale in which offsets occur. Such a strategy could help ensure conservation benefits are localized and promote the recovery of degraded areas in the most threatened forest landscapes.
Los esquemas de compensación ayudan a evitar o revertir la pérdida de hábitat mediante la protección del hábitat existente (deforestación evitada), mediante la restauración de áreas degradadas (recrecimiento natural) o ambos. La escala espacial de una mitigación puede influir en cuál de ellos es seleccionado y es un aspecto importante del diseño de esquema. Sin embargo, no se entiende bien cómo influye la escala espacial en las compensaciones entre la preservación del hábitat existente y la restauración de áreas degradadas. Utilizamos el esquema de compensación forestal más grande del mundo, que forma parte del Código Forestal Brasileño, para explorar cómo la implementación a diferentes escalas espaciales puede afectar el resultado en términos de la superficie de deforestación evitada y el área de recrecimiento. Empleamos una simulación numérica del comercio entre compradores (i. e., aquellos que necesitan compensar la deforestación pasada) y vendedores (i. e., propietarios con exceso de vegetación nativa) en la Amazonía brasileña para estimar deforestación evitada y el recrecimiento a diferentes escalas espaciales de implementación. Permitir compensaciones en grandes escalas espaciales dio lugar a una superficie de deforestación evitada 12 veces mayor que de recrecimiento, mientras que restringir compensaciones a pequeñas escalas espaciales dio lugar a una superficie de recrecimiento dos veces mayor que la deforestación evitada. La mayor superficie total (deforestación evitada y recrecimiento combinados) se conservó cuando la escala espacial del esquema era pequeña, especialmente en localidades muy deforestadas. Para maximizar los beneficios de conservación derivados de la deforestación evitada y el recrecimiento, el diseño del esquema brasileño de compensaciones debe centrarse en restringir la escala espacial en la que se producen las compensaciones. Esta estrategia ayudaría a garantizar que los beneficios de la conservación sean localizados y promuevan la recuperación de zonas degradadas en los paisajes forestales más amenazados.
Assuntos
Conservação dos Recursos Naturais , Florestas , Brasil , EcossistemaRESUMO
Climatic changes have profound effects on the distribution of biodiversity, but untangling the links between climatic change and ecosystem functioning is challenging, particularly in high diversity systems such as tropical forests. Tropical forests may also show different responses to a changing climate, with baseline climatic conditions potentially inducing differences in the strength and timing of responses to droughts. Trait-based approaches provide an opportunity to link functional composition, ecosystem function and environmental changes. We demonstrate the power of such approaches by presenting a novel analysis of long-term responses of different tropical forest to climatic changes along a rainfall gradient. We explore how key ecosystem's biogeochemical properties have shifted over time as a consequence of multi-decadal drying. Notably, we find that drier tropical forests have increased their deciduous species abundance and generally changed more functionally than forests growing in wetter conditions, suggesting an enhanced ability to adapt ecologically to a drying environment.
Assuntos
Biodiversidade , Mudança Climática , Secas , Árvores , Florestas , Clima TropicalRESUMO
As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1 year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1 year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1 year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
Assuntos
Árvores , Clima Tropical , África , Ásia , Biomassa , Carbono , Florestas , América do SulRESUMO
Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
Assuntos
Biodiversidade , Mudança Climática , Florestas , Brasil , Dióxido de Carbono , Ecossistema , Estações do Ano , Árvores/classificação , Árvores/fisiologia , Clima Tropical , ÁguaRESUMO
An approach has been developed to characterize the individual chemical constituents of botanicals. The challenge was to identify and quantitate the significant analytes in these complex mixtures, largely in the absence of authentic standards. The data-rich information content generated by this three-detector configuration was specifically intended to be used to conduct safety and/or quality evaluations for complex botanical mixtures, on a chemical constituent basis. The approach utilized a broad gradient UHPLC chromatographic separation. Following the chromatographic separation and UV detection, the eluent was split and sent into a charged aerosol detector (CAD), for quantitation, and a quadrupole/time-of-flight high-resolution mass spectrometer for component identification. The known bias of the otherwise universal CAD response, for organic solvent composition of the mobile phase, was compensated by the addition of an inverse gradient make-up stream. This approach and the orthogonal information content from the chromatography and three different detectors was specifically designed to enable in-silico safety assessments. These guide, minimize, or even eliminate the need for in vivo and in vitro safety assessments. The methodology was developed and demonstrated using standardized extracts of Ginkgo biloba. Results from the development of this novel approach and the characterization example reported here demonstrate the suitability of this instrumental configuration for enabling in-silico safety assessments and proving general quality assessments of botanicals.
Assuntos
Cromatografia Líquida/métodos , Simulação por Computador , Espectrometria de Massas/métodos , Preparações de Plantas/efeitos adversos , Preparações de Plantas/química , Ginkgo biloba , Extratos Vegetais/químicaRESUMO
Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers.
Assuntos
Aminofenóis/farmacocinética , Tinturas para Cabelo/farmacocinética , Hepatócitos/metabolismo , Queratinócitos/metabolismo , Absorção Cutânea/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Epiderme/metabolismo , Humanos , Espectrometria de Massas , Taxa de Depuração Metabólica , RatosRESUMO
The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world's tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha(-1) yr(-1) between 1968 and 2007 (95% confidence interval (CI), 0.22-0.94; mean interval, 1987-96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr(-1) (CI, 0.15-0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha(-1) yr(-1) (n = 156; 562 ha; CI, 0.29-0.66; mean interval, 1987-97). This indicates a carbon sink of 1.3 Pg C yr(-1) (CI, 0.8-1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.
Assuntos
Carbono/metabolismo , Árvores/metabolismo , Clima Tropical , África , Atmosfera/química , Biomassa , Carbono/análise , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Modelos Biológicos , Árvores/anatomia & histologia , Árvores/química , Árvores/crescimento & desenvolvimento , Meio Selvagem , Madeira/análise , Madeira/químicaRESUMO
The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.
Assuntos
Biodiversidade , Modelos Biológicos , Árvores/fisiologia , América do Sul , Clima TropicalRESUMO
AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. LOCATION: Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. METHODS: Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. RESULTS: The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. MAIN CONCLUSIONS: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
RESUMO
Tropical forests play a vital role in the global carbon cycle, but the amount of carbon they contain and its spatial distribution remain uncertain. Recent studies suggest that once tree height is accounted for in biomass calculations, in addition to diameter and wood density, carbon stock estimates are reduced in many areas. However, it is possible that larger crown sizes might offset the reduction in biomass estimates in some forests where tree heights are lower because even comparatively short trees develop large, well-lit crowns in or above the forest canopy. While current allometric models and theory focus on diameter, wood density, and height, the influence of crown size and structure has not been well studied. To test the extent to which accounting for crown parameters can improve biomass estimates, we harvested and weighed 51 trees (11-169 cm diameter) in southwestern Amazonia where no direct biomass measurements have been made. The trees in our study had nearly half of total aboveground biomass in the branches (44% +/- 2% [mean +/- SE]), demonstrating the importance of accounting for tree crowns. Consistent with our predictions, key pantropical equations that include height, but do not account for crown dimensions, underestimated the sum total biomass of all 51 trees by 11% to 14%, primarily due to substantial underestimates of many of the largest trees. In our models, including crown radius greatly improves performance and reduces error, especially for the largest trees. In addition, over the full data set, crown radius explained more variation in aboveground biomass (10.5%) than height (6.0%). Crown form is also important: Trees with a monopodial architectural type are estimated to have 21-44% less mass than trees with other growth patterns. Our analysis suggests that accounting for crown allometry would substantially improve the accuracy of tropical estimates of tree biomass and its distribution in primary and degraded forests.