RESUMO
It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.
Assuntos
Biodiversidade , Efeito Estufa , Pegada de Carbono , HumanosRESUMO
Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Assuntos
Biodiversidade , Mudança Climática , Extinção BiológicaRESUMO
Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the 100 of the world's worst invasive species defined by the International Union for the Conservation of Nature, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Meio Ambiente , Espécies Introduzidas , Modelos Biológicos , Distribuição Animal , Animais , Biodiversidade , Invertebrados , Modelos Teóricos , Dispersão Vegetal , Estações do Ano , VertebradosRESUMO
Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Assuntos
Biodiversidade , Efeito Estufa , Modelos Teóricos , Animais , Carbono/metabolismo , Conservação dos Recursos Naturais , Geografia , Medição de Risco , Especificidade da Espécie , Fatores de TempoRESUMO
Several global strategies for protected area (PA) expansion have been proposed to achieve the Convention on Biological Diversity's Aichi target 11 as a means to stem biodiversity loss, as required by the Aichi target 12. However, habitat loss outside PAs will continue to affect habitats and species, and PAs may displace human activities into areas that might be even more important for species persistence. Here we measure the expected contribution of PA expansion strategies to Aichi target 12 by estimating the extent of suitable habitat available for all terrestrial mammals, with and without additional protection (the latter giving the counterfactual outcome), under different socio-economic scenarios and consequent land-use change to 2020. We found that expanding PAs to achieve representation targets for ecoregions under a Business-as-usual socio-economic scenario will result in a worse prognosis than doing nothing for more than 50% of the world's terrestrial mammals. By contrast, targeting protection towards threatened species can increase the suitable habitat available to over 60% of terrestrial mammals. Even in the absence of additional protection, an alternative socio-economic scenario, adopting progressive changes in human consumption, leads to positive outcomes for mammals globally and to the largest improvements for wide-ranging species.
Assuntos
Conservação dos Recursos Naturais/métodos , Animais , Biodiversidade , Conservação dos Recursos Naturais/economia , Ecossistema , Espécies em Perigo de Extinção , Atividades Humanas , Humanos , Mamíferos , Modelos Econômicos , Modelos Teóricos , Fatores SocioeconômicosRESUMO
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.