Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(16): 2372-2382, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116001

RESUMO

ConspectusThe multifunctionality and resilience of living systems has inspired an explosion of interest in creating materials with life-like properties. Just as life persists out-of-equilibrium, we too should try to design materials that are thermodynamically unstable but can be harnessed to achieve desirable, adaptive behaviors. Studying minimalistic chemical systems that exhibit relatively simple emergent behaviors, such as motility, communication, or self-organization, can provide insight into fundamental principles which may enable the design of more complex and life-like synthetic materials in the future.Emulsions, which are composed of liquid droplets dispersed in another immiscible fluid phase, have emerged as fascinating chemically minimal materials in which to study nonequilibrium, life-like properties. As covered in this Account, our group has focused on studying oil-in-water emulsions, specifically those which destabilize by solubilization, a process wherein oil is released into the continuous phase over time to create gradients of oil-filled micelles. These chemical gradients can create interfacial tension gradients that lead to droplet self-propulsion as well as mediate communication between neighboring oil droplets. As such, oil-in-water emulsions present an interesting platform for studying active matter. However, despite being chemically minimal with sometimes as few as three chemicals (oil, water, and a surfactant), emulsions present surprising complexity across the molecular to macroscale. Fundamental processes governing their active behavior, such as micelle-mediated interfacial transport, are still not well understood. This complexity is compounded by the challenges of studying systems out-of-equilibrium which typically require new analytical methods and may break our intuition derived from equilibrium thermodynamics.In this Account, we highlight our group's efforts toward developing chemical frameworks for understanding active and interactive oil-in-water emulsions. How do the chemical properties and physical spatial organization of the oil, water, and surfactant combine to yield colloidal-scale active properties? Our group tackles this question by employing systematic studies of active behavior working across the chemical space of oils and surfactants to link molecular structure to active behavior. The Account begins with an introduction to the self-propulsion of single, isolated droplets and how by applying biases, such as with a gravitational field or interfacially adsorbed particles, drop speeds can be manipulated. Next, we illustrate that some droplets can be attractive, as well as self-propulsive/repulsive, which does not fall in line with the current understanding of the impact of oil-filled micelle gradients on interfacial tensions. The mechanisms by which oil-filled micelles influence interfacial tensions of nonequilibrium interfaces is poorly understood and requires deeper molecular understanding. Regardless, we extend our knowledge of droplet motility to design emulsions with nonreciprocal predator-prey interactions and describe the dynamic self-organization that arises from the combination of reciprocal and nonreciprocal interactions between droplets. Finally, we highlight our group's progress toward answering key chemical questions surrounding nonequilibrium processes in emulsions that remain to be answered. We hope that our progress in understanding the chemical principles governing the dynamic nonequilibrium properties of oil-in-water droplets can help inform research in tangential research areas such as cell biology and origins of life.

2.
J Am Chem Soc ; 146(38): 26340-26350, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39255056

RESUMO

Characterizing the propensity of molecules to distribute between fluid phases is key to describing chemical concentrations in heterogeneous mixtures and the corresponding physiochemical properties of a system. Typically, partitioning is studied under equilibrium conditions. However, some mixtures form a single phase at equilibrium but exist in multiple phases when out-of-equilibrium, such as oil-in-water emulsion droplets stabilized by surfactants. Such droplets persist for extended times but ultimately disappear due to droplet dissolution and micellar solubilization. Consequently, equilibrium properties like oil-water partition coefficients may not accurately describe out-of-equilibrium droplets. This study investigates the partitioning of nonionic surfactants between shrinking microscale oil droplets and water under nonequilibrium conditions. Quantitative mass spectrometry is used to analyze the composition of individual microdroplets over time under conditions of varying surfactant composition, concentrations, and oil molecular structures. Within minutes, nonionic surfactants partition into oil droplets, reaching a nonequilibrium steady-state concentration that can be over an order of magnitude higher than that in the aqueous phase. As the droplets solubilize over hours, the surfactants are released back into water, leading to transiently high surfactant concentrations near the droplet-water interface and the formation of a microemulsion phase with a low interfacial tension. Introducing ionic surfactants that form mixed micelles with nonionic surfactants reduces partitioning. Based on this observation, stimuli-responsive ionic surfactants are used to modulate the nonionic surfactant partitioning and trigger reversible phase separation and mixing inside binary oil droplets. This study reveals generalizable nonequilibrium states and conditions experienced by solubilizing oil droplets that influence emulsion properties.

3.
Angew Chem Int Ed Engl ; 61(32): e202204510, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678216

RESUMO

Micellar solubilization is a transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet's interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization decreases the interfacial tension and causes droplets to attract. We characterize the influence of oil chemical structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet "attraction", "repulsion" or "inactivity" are identified. We believe these studies contribute to a fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can influence the dynamics and chemotactic interactions between active droplets.


Assuntos
Tensoativos , Água , Emulsões/química , Micelas , Tensoativos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA