Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nat Rev Mol Cell Biol ; 14(4): 237-48, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23463216

RESUMO

Although the sequence of a protein largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms--Bacteria, Archaea and Eukarya--have evolved a protein homeostasis, or proteostasis, network comprising chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype.


Assuntos
Homeostase , Proteínas/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Animais , Evolução Molecular , Variação Genética , Humanos , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Proteoma/química , Proteoma/genética , Especificidade da Espécie
2.
Annu Rev Biochem ; 78: 959-91, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19298183

RESUMO

Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or "proteostasis," include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the proteostasis network capacity (proteostasis regulators). We propose that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.


Assuntos
Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Encefalopatias/metabolismo , Fibrose Cística/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Conformação Proteica , Estabilidade Proteica
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673803

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Esterol O-Aciltransferase , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Humanos , Masculino , Feminino , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína C1 de Niemann-Pick , Criança , Polimorfismo de Nucleotídeo Único , Animais , Camundongos , Fenótipo , Adolescente , Pré-Escolar , Genes Modificadores , Adulto , Alelos , Índice de Gravidade de Doença , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adulto Jovem
4.
Cell ; 134(2): 204-6, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662533

RESUMO

Protein misfolding is increasingly being recognized as a key process in organismal health and disease. Drummond and Wilke (2008) show that misfolding caused by mistakes during the translation of RNA into proteins (mistranslation) also results in a strong selection pressure to optimize translational fidelity, especially for proteins that are highly expressed.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Proteínas/metabolismo , Animais , Expressão Gênica , Humanos , Ribossomos/metabolismo , Seleção Genética
5.
Cell ; 134(3): 474-84, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692470

RESUMO

Using cryo-electron microscopy, we have solved the structure of an icosidodecahedral COPII coat involved in cargo export from the endoplasmic reticulum (ER) coassembled from purified cargo adaptor Sec23-24 and Sec13-31 lattice-forming complexes. The coat structure shows a tetrameric assembly of the Sec23-24 adaptor layer that is well positioned beneath the vertices and edges of the Sec13-31 lattice. Fitting the known crystal structures of the COPII proteins into the density map reveals a flexible hinge region stemming from interactions between WD40 beta-propeller domains present in Sec13 and Sec31 at the vertices. The structure shows that the hinge region can direct geometric cage expansion to accommodate a wide range of bulky cargo, including procollagen and chylomicrons, that is sensitive to adaptor function in inherited disease. The COPII coat structure leads us to propose a mechanism by which cargo drives cage assembly and membrane curvature for budding from the ER.


Assuntos
Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Transporte Proteico
6.
Cell ; 134(5): 769-81, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775310

RESUMO

Loss-of-function diseases are often caused by a mutation in a protein traversing the secretory pathway that compromises the normal balance between protein folding, trafficking, and degradation. We demonstrate that the innate cellular protein homeostasis, or proteostasis, capacity can be enhanced to fold mutated enzymes that would otherwise misfold and be degraded, using small molecule proteostasis regulators. Two proteostasis regulators are reported that alter the composition of the proteostasis network in the endoplasmic reticulum through the unfolded protein response, increasing the mutant folded protein concentration that can engage the trafficking machinery, restoring function to two nonhomologous mutant enzymes associated with distinct lysosomal storage diseases. Coapplication of a pharmacologic chaperone and a proteostasis regulator exhibits synergy because of the former's ability to further increase the concentration of trafficking-competent mutant folded enzymes. It may be possible to ameliorate loss-of-function diseases by using proteostasis regulators alone or in combination with a pharmacologic chaperone.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Humanos , Leupeptinas/farmacologia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Chaperonas Moleculares/farmacologia , Triterpenos Pentacíclicos , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/metabolismo , Triterpenos/farmacologia
7.
Hum Mol Genet ; 29(1): 1-19, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509197

RESUMO

Genetic diversity provides a rich repository for understanding the role of proteostasis in the management of the protein fold in human biology. Failure in proteostasis can trigger multiple disease states, affecting both human health and lifespan. Niemann-Pick C1 (NPC1) disease is a rare genetic disorder triggered by mutations in NPC1, a multi-spanning transmembrane protein that is trafficked through the exocytic pathway to late endosomes (LE) and lysosomes (Ly) (LE/Ly) to globally manage cholesterol homeostasis. Defects triggered by >300 NPC1 variants found in the human population inhibit export of NPC1 protein from the endoplasmic reticulum (ER) and/or function in downstream LE/Ly, leading to cholesterol accumulation and onset of neurodegeneration in childhood. We now show that the allosteric inhibitor JG98, that targets the cytosolic Hsp70 chaperone/co-chaperone complex, can significantly improve the trafficking and post-ER protein level of diverse NPC1 variants. Using a new approach to model genetic diversity in human disease, referred to as variation spatial profiling, we show quantitatively how JG98 alters the Hsp70 chaperone/co-chaperone system to adjust the spatial covariance (SCV) tolerance and set-points on an amino acid residue-by-residue basis in NPC1 to differentially regulate variant trafficking, stability, and cholesterol homeostasis, results consistent with the role of BCL2-associated athanogene family co-chaperones in managing the folding status of NPC1 variants. We propose that targeting the cytosolic Hsp70 system by allosteric regulation of its chaperone/co-chaperone based client relationships can be used to adjust the SCV tolerance of proteostasis buffering capacity to provide an approach to mitigate systemic and neurological disease in the NPC1 population.


Assuntos
Variação Genética/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/genética , Regulação Alostérica/genética , Regulação Alostérica/fisiologia , Colesterol/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Variação Genética/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Lisossomos/metabolismo , Proteína C1 de Niemann-Pick/genética
8.
J Biol Chem ; 295(23): 8017-8035, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32354745

RESUMO

Niemann-Pick type C (NPC) disease is primarily caused by mutations in the NPC1 gene and is characterized by the accumulation of unesterified cholesterol and lipids in the late endosomal (LE) and lysosomal (Ly) compartments. The most prevalent disease-linked mutation is the I1061T variant of NPC1, which exhibits defective folding and trafficking from the endoplasmic reticulum to the LE/Ly compartments. We now show that the FDA-approved histone deacetylase inhibitor (HDACi) valproic acid (VPA) corrects the folding and trafficking defect associated with I1061T-NPC1 leading to restoration of cholesterol homeostasis, an effect that is largely driven by a reduction in HDAC7 expression. The VPA-mediated trafficking correction is in part associated with an increase in the acetylation of lysine residues in the cysteine-rich domain of NPC1. The HDACi-mediated correction is synergistically improved by combining it with the FDA-approved anti-malarial, chloroquine, a known lysosomotropic compound, which improved the stability of the LE/Ly-localized fraction of the I1061T variant. We posit that combining the activity of VPA, to modulate epigenetically the cellular acetylome, with chloroquine, to alter the lysosomal environment to favor stability of the trafficked I1061T variant protein can have a significant therapeutic benefit in patients carrying at least one copy of the I1061T variant of NPC1, the most common disease-associated mutation leading to NPC disease. Given its ability to cross the blood-brain barrier, we posit VPA provides a potential mechanism to improve the response to 2-hydroxypropyl-ß-cyclodextrin, by restoring a functional NPC1 to the cholesterol managing compartment as an adjunct therapy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Valproico/farmacologia , Células Cultivadas , Cloroquina/farmacologia , Colesterol/metabolismo , Células HeLa , Inibidores de Histona Desacetilases/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Estrutura Molecular , Proteína C1 de Niemann-Pick , Ácido Valproico/química
9.
Hum Mol Genet ; 28(12): 1982-2000, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753450

RESUMO

Understanding the role of the epigenome in protein-misfolding diseases remains a challenge in light of genetic diversity found in the world-wide population revealed by human genome sequencing efforts and the highly variable response of the disease population to therapeutics. An ever-growing body of evidence has shown that histone deacetylase (HDAC) inhibitors (HDACi) can have significant benefit in correcting protein-misfolding diseases that occur in response to both familial and somatic mutation. Cystic fibrosis (CF) is a familial autosomal recessive disease, caused by genetic diversity in the CF transmembrane conductance regulator (CFTR) gene, a cyclic Adenosine MonoPhosphate (cAMP)-dependent chloride channel expressed at the apical plasma membrane of epithelial cells in multiple tissues. The potential utility of HDACi in correcting the phenylalanine 508 deletion (F508del) CFTR variant as well as the over 2000 CF-associated variants remains controversial. To address this concern, we examined the impact of US Food and Drug Administration-approved HDACi on the trafficking and function of a panel of CFTR variants. Our data reveal that panobinostat (LBH-589) and romidepsin (FK-228) provide functional correction of Class II and III CFTR variants, restoring cell surface chloride channel activity in primary human bronchial epithelial cells. We further demonstrate a synergistic effect of these HDACi with Vx809, which can significantly restore channel activity for multiple CFTR variants. These data suggest that HDACi can serve to level the cellular playing field for correcting CF-causing mutations, a leveling effect that might also extend to other protein-misfolding diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/farmacologia , Mutação , Panobinostat/farmacologia , Transporte Proteico/efeitos dos fármacos , Deleção de Sequência , Sulfonamidas/farmacologia
10.
Nature ; 528(7583): 510-6, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26618866

RESUMO

Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (∆F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue ∆F508 CFTR cellular processing defects and function. A favourable change of ∆F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and ∆F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a ∆F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote ∆F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of ∆F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Mapas de Interação de Proteínas , Deleção de Sequência/genética , Brônquios/citologia , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Células Epiteliais/química , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Glicosilação , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteômica , Interferência de RNA , Terapêutica com RNAi , Temperatura
11.
J Biol Chem ; 293(35): 13477-13495, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30006345

RESUMO

Inherited and somatic rare diseases result from >200,000 genetic variants leading to loss- or gain-of-toxic function, often caused by protein misfolding. Many of these misfolded variants fail to properly interact with other proteins. Understanding the link between factors mediating the transcription, translation, and protein folding of these disease-associated variants remains a major challenge in cell biology. Herein, we utilized the cystic fibrosis transmembrane conductance regulator (CFTR) protein as a model and performed a proteomics-based high-throughput screen (HTS) to identify pathways and components affecting the folding and function of the most common cystic fibrosis-associated mutation, the F508del variant of CFTR. Using a shortest-path algorithm we developed, we mapped HTS hits to the CFTR interactome to provide functional context to the targets and identified the eukaryotic translation initiation factor 3a (eIF3a) as a central hub for the biogenesis of CFTR. Of note, siRNA-mediated silencing of eIF3a reduced the polysome-to-monosome ratio in F508del-expressing cells, which, in turn, decreased the translation of CFTR variants, leading to increased CFTR stability, trafficking, and function at the cell surface. This finding suggested that eIF3a is involved in mediating the impact of genetic variations in CFTR on the folding of this protein. We posit that the number of ribosomes on a CFTR mRNA transcript is inversely correlated with the stability of the translated polypeptide. Polysome-based translation challenges the capacity of the proteostasis environment to balance message fidelity with protein folding, leading to disease. We suggest that this deficit can be corrected through control of translation initiation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fator de Iniciação 3 em Eucariotos/genética , Humanos , Mutação , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Dobramento de Proteína , Mapas de Interação de Proteínas , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética
12.
J Biol Chem ; 293(35): 13682-13695, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29986884

RESUMO

The protein chaperones heat shock protein 70 (Hsp70) and Hsp90 are required for de novo folding of proteins and protect against misfolding-related cellular stresses by directing misfolded or slowly folding proteins to the ubiquitin/proteasome system (UPS) or autophagy/lysosomal degradation pathways. Here, we examined the role of the Bcl2-associated athanogene (BAG) family of Hsp70-specific nucleotide-exchange factors in the biogenesis and functional correction of genetic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) whose mutations cause cystic fibrosis (CF). We show that siRNA-mediated silencing of BAG1 and -3, two BAG members linked to the clearance of misfolded proteins via the UPS and autophagy pathways, respectively, leads to functional correction of F508del-CFTR and other disease-associated CFTR variants. BAG3 silencing was the most effective, leading to improved F508del-CFTR stability, trafficking, and restoration of cell-surface function, both alone and in combination with the FDA-approved CFTR corrector, VX-809. We also found that the BAG3 silencing-mediated correction of F508del-CFTR restores the autophagy pathway, which is defective in F508del-CFTR-expressing cells, likely because of the maladaptive stress response in CF pathophysiology. These results highlight the potential therapeutic benefits of targeting the cellular chaperone system to improve the functional folding of CFTR variants contributing to CF and possibly other protein-misfolding-associated diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Estabilidade Proteica , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Regulação para Cima
13.
Mol Cell Proteomics ; 16(11): 1938-1957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28860124

RESUMO

Niemann-Pick type C (NPC) disease is an inherited, progressive neurodegenerative disorder principally caused by mutations in the NPC1 gene. NPC disease is characterized by the accumulation of unesterified cholesterol in the late endosomes (LE) and lysosomes (Ly) (LE/Ly). Vorinostat, a histone deacetylase inhibitor (HDACi), restores cholesterol homeostasis in fibroblasts derived from NPC patients; however, the exact mechanism by which Vorinostat restores cholesterol level is not known yet. In this study, we performed comparative proteomic profiling of the response of NPC1I1061T fibroblasts to Vorinostat. After stringent statistical criteria to filter identified proteins, we observed 202 proteins that are differentially expressed in Vorinostat-treated fibroblasts. These proteins are members of diverse cellular pathways including the endomembrane dependent protein folding-stability-degradation-trafficking axis, energy metabolism, and lipid metabolism. Our study shows that treatment of NPC1I1061T fibroblasts with Vorinostat not only enhances pathways promoting the folding, stabilization and trafficking of NPC1 (I1061T) mutant to the LE/Ly, but alters the expression of lysosomal proteins, specifically the lysosomal acid lipase (LIPA) involved in the LIPA->NPC2->NPC1 based flow of cholesterol from the LE/Ly lumen to the LE/Ly membrane. We posit that the Vorinostat may modulate numerous pathways that operate in an integrated fashion through epigenetic and post-translational modifications reflecting acetylation/deacetylation balance to help manage the defective NPC1 fold, the function of the LE/Ly system and/or additional cholesterol metabolism/distribution pathways, that could globally contribute to improved mitigation of NPC1 disease in the clinic based on as yet uncharacterized principles of cellular metabolism dictating cholesterol homeostasis.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Doença de Niemann-Pick Tipo C/metabolismo , Proteoma/efeitos dos fármacos , Proteômica/métodos , Linhagem Celular , Metabolismo Energético , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas , Vorinostat
14.
J Lipid Res ; 58(4): 695-708, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28193631

RESUMO

Niemann-Pick C (NPC) disease is an autosomal recessive disorder that leads to excessive storage of cholesterol and other lipids in late endosomes and lysosomes. The large majority of NPC disease is caused by mutations in NPC1, a large polytopic membrane protein that functions in late endosomes. There are many disease-associated mutations in NPC1, and most patients are compound heterozygotes. The most common mutation, NPC1I1061T, has been shown to cause endoplasmic reticulum-associated degradation of the NPC1 protein. Treatment of patient-derived NPC1I1061T fibroblasts with histone deacetylase inhibitors (HDACis) vorinostat or panobinostat increases expression of the mutant NPC1 protein and leads to correction of the cholesterol storage. Here, we show that several other human NPC1 mutant fibroblast cell lines can also be corrected by vorinostat or panobinostat and that treatment with vorinostat extends the lifetime of the NPC1I1061T protein. To test effects of HDACi on a large number of NPC1 mutants, we engineered a U2OS cell line to suppress NPC1 expression by shRNA and then transiently transfected these cells with 60 different NPC1 mutant constructs. The mutant NPC1 did not significantly reduce cholesterol accumulation, but approximately 85% of the mutants showed reduced cholesterol accumulation when treated with vorinostat or panobinostat.


Assuntos
Proteínas de Transporte/genética , Colesterol/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Panobinostat , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção , Vorinostat
15.
PLoS Biol ; 12(11): e1001998, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25406061

RESUMO

Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure-function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR), through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/etiologia , Proteínas de Ligação a DNA/genética , Deficiências na Proteostase/genética , Fatores de Transcrição/genética , Animais , Antineoplásicos Alquilantes/uso terapêutico , Caenorhabditis elegans , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diterpenos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Compostos de Epóxi/uso terapêutico , Inativação Gênica , Fatores de Transcrição de Choque Térmico , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Camundongos Transgênicos , Organoides , Fenantrenos/uso terapêutico , Prostaglandina-E Sintases , Dobramento de Proteína , Mucosa Respiratória/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
16.
Mol Cell Proteomics ; 14(7): 1734-49, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25873482

RESUMO

Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼ 15-20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1(I1061T) primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1(I1061T) cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1(I1061T) fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions.


Assuntos
Proteínas de Transporte/genética , Fibroblastos/metabolismo , Glicoproteínas de Membrana/genética , Mutação/genética , Doença de Niemann-Pick Tipo C/genética , Proteômica/métodos , Western Blotting , Bases de Dados de Proteínas , Regulação para Baixo , Fibroblastos/patologia , Ontologia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Marcação por Isótopo , Peso Molecular , Proteína C1 de Niemann-Pick , Proteoma/metabolismo , Reprodutibilidade dos Testes , Superóxido Dismutase/metabolismo
17.
Am J Respir Crit Care Med ; 191(3): 261-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25590812

RESUMO

The aging of the population in the United States and throughout the developed world has increased morbidity and mortality attributable to lung disease, while the morbidity and mortality from other prevalent diseases has declined or remained stable. Recognizing the importance of aging in the development of lung disease, the American Thoracic Society (ATS) highlighted this topic as a core theme for the 2014 annual meeting. The relationship between aging and lung disease was discussed in several oral symposiums and poster sessions at the annual ATS meeting. In this article, we used the input gathered at the conference to develop a broad framework and perspective to stimulate basic, clinical, and translational research to understand how the aging process contributes to the onset and/or progression of lung diseases. A consistent theme that emerged from the conference was the need to apply novel, systems-based approaches to integrate a growing body of genomic, epigenomic, transcriptomic, and proteomic data and elucidate the relationship between biologic hallmarks of aging, altered lung function, and increased susceptibility to lung diseases in the older population. The challenge remains to causally link the molecular and cellular changes of aging with age-related changes in lung physiology and disease susceptibility. The purpose of this review is to stimulate further research to identify new strategies to prevent or treat age-related lung disease.


Assuntos
Envelhecimento , Pneumopatias/epidemiologia , Congressos como Assunto , Suscetibilidade a Doenças , Genoma Humano , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Incidência , Pneumopatias/genética , Pneumopatias/mortalidade , Fenótipo , Prevalência , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fatores de Risco , Transcriptoma , Estados Unidos/epidemiologia
18.
Am J Respir Crit Care Med ; 189(1): 96-103, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24033344

RESUMO

Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on "Malformed Protein Structure and Proteostasis in Lung Diseases" was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment.


Assuntos
Pneumopatias/etiologia , Deficiências na Proteostase/etiologia , Envelhecimento , Pesquisa Biomédica , Descoberta de Drogas , Educação , Humanos , Pneumopatias/diagnóstico , Pneumopatias/terapia , National Heart, Lung, and Blood Institute (U.S.) , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/diagnóstico , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/terapia , Estados Unidos
19.
Crit Rev Biochem Mol Biol ; 47(3): 282-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22360545

RESUMO

Protein misassembly into aggregate structures, including cross-ß-sheet amyloid fibrils, is linked to diseases characterized by the degeneration of post-mitotic tissue. While amyloid fibril deposition in the extracellular space certainly disrupts cellular and tissue architecture late in the course of amyloid diseases, strong genetic, pathological and pharmacologic evidence suggests that the process of amyloid fibril formation itself, known as amyloidogenesis, likely causes these maladies. It seems that the formation of oligomeric aggregates during the amyloidogenesis process causes the proteotoxicity and cytotoxicity characteristic of these disorders. Herein, we review what is known about the genetics, biochemistry and pathology of familial amyloidosis of Finnish type (FAF) or gelsolin amyloidosis. Briefly, autosomal dominant D187N or D187Y mutations compromise Ca(2+) binding in domain 2 of gelsolin, allowing domain 2 to sample unfolded conformations. When domain 2 is unfolded, gelsolin is subject to aberrant furin endoproteolysis as it passes through the Golgi on its way to the extracellular space. The resulting C-terminal 68 kDa fragment (C68) is susceptible to extracellular endoproteolytic events, possibly mediated by a matrix metalloprotease, affording 8 and 5 kDa amyloidogenic fragments of gelsolin. These amyloidogenic fragments deposit systemically, causing a variety of symptoms including corneal lattice dystrophy and neurodegeneration. The first murine model of the disease recapitulates the aberrant processing of mutant plasma gelsolin, amyloid deposition, and the degenerative phenotype. We use what we have learned from our biochemical studies, as well as insight from mouse and human pathology to propose therapeutic strategies that may halt the progression of FAF.


Assuntos
Amiloidose Familiar/genética , Amiloidose Familiar/patologia , Gelsolina/química , Amiloide/química , Amiloidose , Amiloidose Familiar/tratamento farmacológico , Amiloidose Familiar/epidemiologia , Animais , Benzoxazóis/uso terapêutico , Angiopatia Amiloide Cerebral Familiar , Distrofias Hereditárias da Córnea , Furina/química , Complexo de Golgi/química , Humanos , Camundongos , Fragmentos de Peptídeos/química , Mutação Puntual , Dobramento de Proteína , Proteólise
20.
J Proteome Res ; 13(11): 4668-75, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24818864

RESUMO

The most prevalent cause of cystic fibrosis (CF) is the deletion of a phenylalanine residue at position 508 in CFTR (ΔF508-CFTR) protein. The mutated protein fails to fold properly, is retained in the endoplasmic reticulum via the action of molecular chaperones, and is tagged for degradation. In this study, the differences in protein expression levels in CF cell models were assessed using a systems biology approach aided by the sensitivity of MudPIT proteomics. Analysis of the differential proteome modulation without a priori hypotheses has the potential to identify markers that have not yet been documented. These may also serve as the basis for developing new diagnostic and treatment modalities for CF. Several novel differentially expressed proteins observed in our study are likely to play important roles in the pathogenesis of CF and may serve as a useful resource for the CF scientific community.


Assuntos
Biomarcadores/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteômica/métodos , Biologia de Sistemas/métodos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA