Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
NMR Biomed ; : e5224, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082385

RESUMO

We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and 1H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The 1H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized 1H-MRS is improved significantly in the presence of the array. Comparison of in vivo 1H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for 1H-MRS and MRI applications, specifically at 7 T, where 1H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human 1H-MRS and MRI in the regions with lower transmit efficiency.

2.
Epilepsia ; 64(10): 2725-2737, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452760

RESUMO

OBJECTIVES: Coronavirus disease 2019 (COVID-19) is associated with mortality in persons with comorbidities. The aim of this study was to evaluate in-hospital outcomes in patients with COVID-19 with and without epilepsy. METHODS: We conducted a retrospective study of patients with COVID-19 admitted to a multicenter health system between March 15, 2020, and May 17, 2021. Patients with epilepsy were identified using a validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)/ICD-10-CM case definition. Logistic regression models and Kaplan-Meier analyses were conducted for mortality and non-routine discharges (i.e., not discharged home). An ordinary least-squares regression model was fitted for length of stay (LOS). RESULTS: We identified 9833 people with COVID-19 including 334 with epilepsy. On univariate analysis, people with epilepsy had significantly higher ventilator use (37.70% vs 14.30%, p < .001), intensive care unit (ICU) admissions (39.20% vs 17.70%, p < .001) mortality rate (29.60% vs 19.90%, p < .001), and longer LOS (12 days vs 7 days, p < .001). and fewer were discharged home (29.64% vs 57.37%, p < .001). On multivariate analysis, only non-routine discharge (adjusted odds ratio [aOR] 2.70, 95% confidence interval [CI] 2.00-3.70; p < .001) and LOS (32.50% longer, 95% CI 22.20%-43.60%; p < .001) were significantly different. Factors associated with higher odds of mortality in epilepsy were older age (aOR 1.05, 95% CI 1.03-1.08; p < .001), ventilator support (aOR 7.18, 95% CI 3.12-16.48; p < .001), and higher Charlson comorbidity index (CCI) (aOR 1.18, 95% CI 1.04-1.34; p = .010). In epilepsy, admissions between August and December 2020 or January and May 2021 were associated with a lower odds of non-routine discharge and decreased LOS compared to admissions between March and July 2020, but this difference was not statistically significant. SIGNIFICANCE: People with COVID-19 who had epilepsy had a higher odds of non-routine discharge and longer LOS but not higher mortality. Older age (≥65), ventilator use, and higher CCI were associated with COVID-19 mortality in epilepsy. This suggests that older adults with epilepsy and multimorbidity are more vulnerable than those without and should be monitored closely in the setting of COVID-19.


Assuntos
COVID-19 , Epilepsia , Humanos , Idoso , Estudos de Coortes , Estudos Retrospectivos , Tempo de Internação , Epilepsia/epidemiologia , Hospitais , Mortalidade Hospitalar
3.
Neuroimage ; 264: 119704, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349598

RESUMO

The ventral tegmental area (VTA) is one of the major sources of dopamine in the brain and has been associated with reward prediction, error-based reward learning, volitional drive and anhedonia. However, precise anatomical investigations of the VTA have been prevented by the use of standard-resolution MRI, reliance on subjective manual tracings, and lack of quantitative measures of dopamine-related signal. Here, we combine ultra-high field 400 µm3 quantitative MRI with dopamine-related signal mapping, and a mixture of machine learning and supervised computational techniques to delineate the VTA in a transdiagnostic sample of subjects with and without depression and anxiety disorders. Subjects also underwent cognitive testing to measure intrinsic and extrinsic motivational tone. Fifty-one subjects were scanned in total, including healthy control (HC) and mood/anxiety (MA) disorder subjects. MA subjects had significantly larger VTA volumes compared to HC but significantly lower signal intensity within VTA compared to HC, indicating reduced structural integrity of the dopaminergic VTA. Interestingly, while VTA integrity did not significantly correlate with self-reported depression or anxiety symptoms, it was correlated with an objective cognitive measure of extrinsic motivation, whereby lower VTA integrity was associated with lower motivation. This is the first study to demonstrate a computational pipeline for detecting and delineating the VTA in human subjects with 400 µm3 resolution. We highlight the use of objective transdiagnostic measures of cognitive function that link neural integrity to behavior across clinical and non-clinical groups.


Assuntos
Dopamina , Área Tegmentar Ventral , Humanos , Área Tegmentar Ventral/diagnóstico por imagem , Recompensa , Ansiedade/diagnóstico por imagem , Motivação , Transtornos de Ansiedade
4.
Acta Neuropathol ; 144(1): 5-26, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35579705

RESUMO

Traumatic brain injury (TBI) is a leading cause of neurologic impairment and death that remains poorly understood. Rodent models have yet to produce clinical therapies, and the exploration of larger and more diverse models remains relatively scarce. We investigated the potential for brain injury after headbutting in two combative bovid species by assessing neuromorphology and neuropathology through immunohistochemistry and stereological quantification. Postmortem brains of muskoxen (Ovibos moschatus, n = 3) and bighorn sheep (Ovis canadensis, n = 4) were analyzed by high-resolution MRI and processed histologically for evidence of TBI. Exploratory histological protocols investigated potential abnormalities in neurons, microglia, and astrocytes in the prefrontal and parietal cortex. Phosphorylated tau protein, a TBI biomarker found in the cerebrospinal fluid and in neurodegenerative lesions, was used to detect possible cellular consequences of chronic or acute TBI. MRI revealed no abnormal neuropathological changes; however, high amounts of tau-immunoreactive neuritic thread clusters, neurites, and neurons were concentrated in the superficial layers of the neocortex, preferentially at the bottom of the sulci in the muskoxen and occasionally around blood vessels. Tau-immunoreactive lesions were rare in the bighorn sheep. Additionally, microglia and astrocytes showed no grouping around tau-immunoreactive cells in either species. Our preliminary findings indicate that muskoxen and possibly other headbutting bovids suffer from chronic or acute brain trauma and that the males' thicker skulls may protect them to a certain extent.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Encefalopatia Traumática Crônica , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Bovinos , Encefalopatia Traumática Crônica/patologia , Masculino , Neuropatologia , Proteínas tau/metabolismo
5.
Br J Neurosurg ; 36(1): 79-85, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32538686

RESUMO

OBJECT: The authors performed an extensive comparison between patients treated with open versus an endoscopic approach for skull base malignancy with emphasis on surgical outcomes. METHODS: A single-institution retrospective review of 60 patients who underwent surgery for skull base malignancy between 2009 and 2018 was performed. Disease features, surgical resection, post-operative morbidities, adjuvant treatment, recurrence, and survival rates were compared between 30 patients who received purely open surgery and 30 patients who underwent purely endoscopic resection for a skull base malignancy. RESULTS: Of the 60 patients with skull base malignancy, 30 underwent open resection and 30 underwent endoscopic resection. The most common hisotype for endoscopic resection was squamous cell carcinoma (26.7%), olfactory neuroblastoma (16.7%), and sarcoma (10.0%), and 43.3%, 13.3%, and 10.0% for the open resection cohort, respectively. There were no statistical differences in gross total resection, surgical-associated cranial neuropathy, or ability to achieve negative margins between the groups (p > 0.1, all comparisons). Patients who underwent endoscopic resection had shorter surgeries (320.3 ± 158.5 minutes vs. 495.3 ± 187.6 minutes (p = 0.0003), less intraoperative blood loss (282.2 ± 333.6 ml vs. 696.7 ± 500.2 ml (p < 0.0001), and shorter length of stay (3.5 ± 3.7 days vs. 8.8 ± 6.0 days (p < 0.0001). Additionally, patients treated endoscopically initiated adjuvant radiation treatment more quickly (48.0 ± 20.3 days vs. 72.0 ± 20.5 days (p = 0.01). CONCLUSIONS: An endoscopic endonasal approach facilitates a clinically meaningful improvement in surgical outcomes for skull base malignancies.


Assuntos
Neoplasias Nasais , Neoplasias da Base do Crânio , Endoscopia , Humanos , Cavidade Nasal/cirurgia , Neoplasias Nasais/cirurgia , Estudos Retrospectivos , Base do Crânio/cirurgia , Neoplasias da Base do Crânio/patologia , Neoplasias da Base do Crânio/cirurgia , Resultado do Tratamento
6.
J Headache Pain ; 22(1): 112, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556025

RESUMO

BACKGROUND: Trigeminal Neuralgia (TN) is a chronic neurological disease that is strongly associated with neurovascular compression (NVC) of the trigeminal nerve near its root entry zone. The trigeminal nerve at the site of NVC has been extensively studied but limbic structures that are potentially involved in TN have not been adequately characterized. Specifically, the hippocampus is a stress-sensitive region which may be structurally impacted by chronic TN pain. As the center of the emotion-related network, the amygdala is closely related to stress regulation and may be associated with TN pain as well. The thalamus, which is involved in the trigeminal sensory pathway and nociception, may play a role in pain processing of TN. The objective of this study was to assess structural alterations in the trigeminal nerve and subregions of the hippocampus, amygdala, and thalamus in TN patients using ultra-high field MRI and examine quantitative differences in these structures compared with healthy controls. METHODS: Thirteen TN patients and 13 matched controls were scanned at 7-Tesla MRI with high resolution, T1-weighted imaging. Nerve cross sectional area (CSA) was measured and an automated algorithm was used to segment hippocampal, amygdaloid, and thalamic subregions. Nerve CSA and limbic structure subnuclei volumes were compared between TN patients and controls. RESULTS: CSA of the posterior cisternal nerve on the symptomatic side was smaller in patients (3.75 mm2) compared with side-matched controls (5.77 mm2, p = 0.006). In TN patients, basal subnucleus amygdala volume (0.347 mm3) was reduced on the symptomatic side compared with controls (0.401 mm3, p = 0.025) and the paralaminar subnucleus volume (0.04 mm3) was also reduced on the symptomatic side compared with controls (0.05 mm3, p = 0.009). The central lateral thalamic subnucleus was larger in TN patients on both the symptomatic side (0.033 mm3) and asymptomatic side (0.035 mm3), compared with the corresponding sides in controls (0.025 mm3 on both sides, p = 0.048 and p = 0.003 respectively). The inferior and lateral pulvinar thalamic subnuclei were both reduced in TN patients on the symptomatic side (0.2 mm3 and 0.17 mm3 respectively) compared to controls (0.23 mm3, p = 0.04 and 0.18 mm3, p = 0.04 respectively). No significant findings were found in the hippocampal subfields analyzed. CONCLUSIONS: These findings, generated through a highly sensitive 7 T MRI protocol, provide compelling support for the theory that TN neurobiology is a complex amalgamation of local structural changes within the trigeminal nerve and structural alterations in subnuclei of limbic structures directly and indirectly involved in nociception and pain processing.


Assuntos
Dor Crônica , Neuralgia do Trigêmeo , Benchmarking , Humanos , Imageamento por Ressonância Magnética , Nervo Trigêmeo , Neuralgia do Trigêmeo/diagnóstico por imagem
7.
Epilepsia ; 61(2): 287-296, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32020606

RESUMO

OBJECTIVE: Vascular structures may play a significant role in epileptic pathology. Although previous attempts to characterize vasculature relative to epileptogenic zones and hippocampal sclerosis have been inconsistent, an in vivo method of analysis would assist in resolving these inconsistencies and facilitate a comparison against healthy controls in a human model. Magnetic resonance imaging is a noninvasive technique that provides excellent soft tissue contrast, and the relatively recent development of susceptibility-weighted imaging has dramatically improved the visibility of small veins. METHODS: We built and tested a Hessian-based segmentation technique, which takes advantage of the increased signal and contrast available at 7 T to detect venous structures in vivo. We investigate the ability of this technique to quantify vessels in the brain and apply it to an asymmetry analysis of vessel density in the hippocampus in patients with mesial temporal lobe epilepsy (MTLE) and neocortical epilepsy. RESULTS: Vessel density was highly symmetric in the hippocampus in controls (mean asymmetry = 0.080 ± 0.076, median = 0.05027), whereas average vessel density asymmetry was greater in neocortical (mean asymmetry = 0.23 ± 0.17, median = 0.14) and MTLE (mean asymmetry = 0.37 ± 0.46, median = 0.26) patients, with the decrease in vessel density ipsilateral to the suspected seizure onset zone. Post hoc testing with one-way analysis of variance and Tukey post hoc test indicated significant differences in the group means (P < .02) between MTLE and the control group only. SIGNIFICANCE: Asymmetry in vessel density in the hippocampus is visible in patients with MTLE, even when qualitative and quantitative measures of hippocampal asymmetry show little volumetric difference between epilepsy patients and healthy controls.


Assuntos
Epilepsias Parciais/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Vasos Sanguíneos/diagnóstico por imagem , Circulação Cerebrovascular , Suscetibilidade a Doenças/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Hipocampo/irrigação sanguínea , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Adulto Jovem
8.
Neuroradiology ; 62(4): 473-482, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31925468

RESUMO

PURPOSE: Pituitary adenomas are common CNS tumors that can cause endocrine dysfunction due to hormone oversecretion and by mass effect on the normal gland. The study of pituitary adenomas and adjacent sellar anatomy with high-resolution 7 T MRI may further characterize endocrine dysfunction. The purpose of this study was to determine the efficacy of 7 T MRI in identifying radiological markers for endocrine function. METHODS: MR images obtained in 23 patients with pituitary adenomas were reviewed by consensus between three neuroradiologists. Landmarks and criteria were devised to measure radiological features of stalk, tumor, and normal gland. Fischer's exact tests and nominal logistic regression were performed. RESULTS: Mean cross-sectional area of the stalk just below the infundibular recess was 6.3 ± 3.7 mm2. Mean curvature and deviation angles were 34.2° ± 23.2° and 29.7° ± 17.3°, respectively. Knosp scores obtained differed between 7 T and lower field strength scans (P < 0.0001 [right] and P = 0.0006 [left]). Ability to characterize tumor was rated higher at 7 T compared with lower field MRI, P = 0.05. Confidence in visualizing normal gland was also higher using 7 T MRI, P = 0.036. The six hormone-secreting tumors had higher corrected T2 mean SI than non-secreting tumors (2.54 vs. - 0.38, P = 0.0196). Seven patients had preoperative hypopituitarism and had significantly greater stalk curvature angles than patients without hypopituitarism (71.7° vs. 36.55°, P = 0.027). CONCLUSION: Radiological characterization of pituitary adenomas and adjacent native pituitary tissue may benefit with the use of 7 T MRI. Corrected T2 SI of tumor may be a sensitive predictor of hormonal secretion and may be useful in the diagnostic work-up for pituitary adenoma. 7 T MRI may be valuable in identifying markers of endocrine function in patients with pituitary adenomas. Our results indicate that hormone-secreting tumors have higher T2-weighted SI and tumors associated with preoperative hypopituitarism have greater stalk curvature angles.


Assuntos
Adenoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias Hipofisárias/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hipófise/anatomia & histologia , Hipófise/diagnóstico por imagem , Estudos Prospectivos
9.
Neuroimage ; 185: 27-34, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30312809

RESUMO

BACKGROUND: Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of intracortical myelin in the human brain using ultra-high field MRI. METHODS: Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and a T1-weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T1 values were extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T1 values were used to infer myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroanatomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same protocol as positive controls. RESULTS: Intracortical T1 values decreased between the outer brain surface and the gray-white matter boundary following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions. Across all regions, there was a positive association between T1 values and non-linearity indices (P < 10-5). Both T1 values (P < 10-5) and non-linearity indices (P < 10-15) were associated with cortical thickness. Higher myelin concentration but only in the deepest cortical levels was associated with increased subcortical fractional anisotropy (P = 0.05). CONCLUSIONS: We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent examination of intracortical myelin organization. The extracted metrics, T1 values and the non-linearity index, have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter microstructure.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina , Neuroimagem/métodos , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Bainha de Mielina/ultraestrutura
10.
Neurosurg Rev ; 42(1): 1-7, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28560608

RESUMO

Meningioma consistency is a critical factor that influences preoperative planning for surgical resection. Recent studies have investigated the utility of preoperative magnetic resonance elastography (MRE) in predicting meningioma consistency. However, it is unclear whether existing methods are optimal for application to clinical practice. The results and conclusions of these studies are limited by their imaging acquisition methods, such as the use of a single MRE frequency and the use of shear modulus as the final measurement variable, rather than its storage and loss modulus components. In addition, existing studies do not account for the effects of cranial anatomy, which have been shown to significantly distort the MRE signal. Given the interaction of meningiomas with these anatomic structures and the lack of supporting evidence with more accurate imaging parameters, MRE may not yet be reliable for use in clinical practice.


Assuntos
Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Humanos , Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia
11.
NMR Biomed ; 31(7): e3940, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29856517

RESUMO

B1 inhomogeneity and chemical shift displacement error (CSDE) increase with the main magnetic field strength and are therefore deleterious for magnetic resonance spectroscopy (MRS) at ultrahigh field. A solution is to use adiabatic pulses which operate over a broad range of B1 and thus are insensitive to B1 inhomogeneity. Moreover, adiabatic pulses usually have a relatively higher bandwidth, which makes CSDE low to negligible. The use of exclusively adiabatic pulses for single-voxel spectroscopy (SVS) typically brings the disadvantage of a long echo time (TE), but the advantage of a low and matched CSDE. Herein, we took advantage of short-duration, low-power, matched-phase adiabatic spin echo (MASE) pulses to implement a matched CSDE semi-localized by adiabatic selective refocusing (sLASER) sequence capable of attaining short TEs, while CSDE is matched and still comparatively low. We also demonstrate here the feasibility of the direct measurement of the γ-aminobutyric acid (GABA) resonance at 2.28 ppm well separated from the neighboring glutamate resonance at 7 T using the implemented MASE-sLASER sequence at TEs of 68 and 136 ms. The shorter duration of MASE pulses also made it possible to implement a Mescher-Garwood-semi-localized by adiabatic selective refocusing (MEGA-sLASER) (with MASE) sequence with TE = 68 ms for editing GABA at 7 T, the results for which are also shown.


Assuntos
Espectroscopia de Ressonância Magnética , Marcadores de Spin , Adulto , Simulação por Computador , Ácido Glutâmico/metabolismo , Humanos , Masculino , Metaboloma , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
12.
Neurosurg Rev ; 41(3): 745-753, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27873040

RESUMO

Tumor consistency is a critical factor that influences operative strategy and patient counseling. Magnetic resonance imaging (MRI) describes the concentration of water within living tissues and as such, is hypothesized to predict aspects of their biomechanical behavior. In meningiomas, MRI signal intensity has been used to predict the consistency of the tumor and its histopathological subtype, though its predictive capacity is debated in the literature. We performed a systematic review of the PubMed database since 1990 concerning MRI appearance and tumor consistency to assess whether or not MRI can be used reliably to predict tumor firmness. The inclusion criteria were case series and clinical studies that described attempts to correlate preoperative MRI findings with tumor consistency. The relationship between the pre-operative imaging characteristics, intraoperative findings, and World Health Organization (WHO) histopathological subtype is described. While T2 signal intensity and MR elastography provide a useful predictive measure of tumor consistency, other techniques have not been validated. T1-weighted imaging was not found to offer any diagnostic or predictive value. A quantitative assessment of T2 signal intensity more reliably predicts consistency than inherently variable qualitative analyses. Preoperative knowledge of tumor firmness affords the neurosurgeon substantial benefit when planning surgical techniques. Based upon our review of the literature, we currently recommend the use of T2-weighted MRI for predicting consistency, which has been shown to correlate well with analysis of tumor histological subtype. Development of standard measures of tumor consistency, standard MRI quantification metrics, and further exploration of MRI technique may improve the predictive ability of neuroimaging for meningiomas.


Assuntos
Imageamento por Ressonância Magnética/métodos , Meningioma/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Humanos , Meningioma/cirurgia
13.
Neuroimage ; 154: 59-80, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363836

RESUMO

In recent years the field of fMRI research has enjoyed expanded technical abilities related to resolution, as well as use across many fields of brain research. At the same time, the field has also dealt with uncertainty related to many known and unknown effects of artifact in fMRI data. In this review we discuss an emerging fMRI technology, called multi-echo (ME)-fMRI, which focuses on improving the fidelity and interpretability of fMRI. Where the essential problem of standard single-echo fMRI is the indeterminacy of sources of signals, whether BOLD or artifact, this is not the case for ME-fMRI. By acquiring multiple echo images per slice, the ME approach allows T2* decay to be modeled at every voxel at every time point. Since BOLD signals arise by changes in T2* over time, an fMRI experiment sampling the T2* signal decay can be analyzed to distinguish BOLD from artifact signal constituents. While the ME approach has a long history of use in theoretical and validation studies, modern MRI systems enable whole-brain multi-echo fMRI at high resolution. This review covers recent multi-echo fMRI acquisition methods, and the analysis steps for this data to make fMRI at once more principled, straightforward, and powerful. After a brief overview of history and theory, T2* modeling and applications will be discussed. These applications include T2* mapping and combining echoes from ME data to increase BOLD contrast and mitigate dropout artifacts. Next, the modeling of fMRI signal changes to detect signal origins in BOLD-related T2* versus artifact-related S0 changes will be reviewed. A focus is on the use of ME-fMRI data to extract and classify components from spatial ICA, called multi-echo ICA (ME-ICA). After describing how ME-fMRI and ME-ICA lead to a general model for analysis of fMRI signals, applications in animal and human imaging will be discussed. Applications include removing motion artifacts in resting state data at subject and group level. New imaging methods such as multi-band multi-echo fMRI and imaging at 7T are demonstrated throughout the review, and a practical analysis pipeline is described. The review culminates with evidence from recent studies of major boosts in statistical power from using multi-echo fMRI for detecting activation and connectivity in healthy individuals and patients with neuropsychiatric disease. In conclusion, the review shows evidence that the multi-echo approach expands the range of experiments that is practicable using fMRI. These findings suggest a compelling future role of the multi-echo approach in subject-level and clinical fMRI.


Assuntos
Imagem Ecoplanar/métodos , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Humanos
14.
Magn Reson Med ; 76(6): 1741-1749, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26619960

RESUMO

PURPOSE: At high field, T2 -weighted (T2 w) imaging is limited by transmit field inhomogeneity and increased radiofrequency power deposition. In this work, we introduce SAMPA (Slice-selective Adiabatic Magnetization T2 PrepAration) and demonstrate its use for efficient brain T2 w imaging at 7 Tesla (T). METHODS: SAMPA was designed by subsampling an optimized B1 insensitive rotation (BIR4) waveform with small tip angle linear subpulses. To perform T2 w imaging, SAMPA was inserted before a fast gradient echo acquisition. The off-resonance behavior, B1 robustness, and slice selectivity of the novel T2 preparation module were analyzed using Bloch simulations. The performance of SAMPA for T2 w imaging was demonstrated in phantom experiments as well as in the brains of healthy volunteers at 7T. RESULTS: Based on simulations, the proposed design operates at peak B1 of 15 µT and higher, within a 400 Hz bandwidth. T2 values were in strong agreement with spin echo-based T2 mapping in phantom experiments. Whole brain, interleaved multislab three-dimensional imaging could be acquired with 0.8 mm3 isotropic resolution in 5:36 min per T2 weighting. CONCLUSION: Compared with previous adiabatic T2 preparation techniques, SAMPA allows for slice-selectivity, which can lead to efficient and robust acquisitions for T2 w imaging at high field. Magn Reson Med 76:1741-1749, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Humanos , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Magn Reson Med ; 76(4): 1071-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26519948

RESUMO

PURPOSE: MR spectroscopic imaging (MRSI) benefits from operation at 7T due to increased signal-to-noise ratio (SNR) and spectral separation. The 180° radiofrequency (RF) pulses used in the conventional MRSI sequences are particularly susceptible to the variation in the transmitted RF (B1 ) field and severe chemical shift localization errors at 7T. RF power deposition, as measured by specific absorption rate (SAR), also increases with field strength. Adiabatic 180° RF pulses may mitigate the effects of B1 variation. We designed and implemented a semiadiabatic spectral-spatial spectroscopic imaging (SASSI) pulse sequence to provide more uniform spectral data at 7T with reduced SAR. METHODS: The adiabatic Shinnar-Le Roux algorithm was used to generate a high bandwidth 180° adiabatic spectral-spatial (SPSP) pulse that captured a spectral range containing the main metabolites of interest. A pair of 180° SPSP pulses was used to refocus the signal excited by a 90° SPSP pulse in order to select a 3D volume of interest in the SASSI sequence. RESULTS: The SASSI pulse sequence produced spectra with more uniform brain metabolite SNR when compared with the conventional nonadiabatic MRSI sequence. CONCLUSION: SASSI achieved comparable SNR to the current adiabatic alternative, semi-LASER, but with 1/3 of the SAR. Magn Reson Med 76:1071-1082, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Encéfalo/metabolismo , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Processamento de Sinais Assistido por Computador , Encéfalo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Magn Reson Med ; 75(2): 709-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25753055

RESUMO

PURPOSE: Simultaneous multislice (SMS) imaging is a powerful technique that can reduce image acquisition time for anatomical, functional, and diffusion weighted magnetic resonance imaging. At higher magnetic fields, such as 7 Tesla, increased radiofrequency (RF) field inhomogeneity, power deposition, and changes in relaxation parameters make SMS spin echo imaging challenging. We designed an adiabatic 180° Power Independent of Number of Slices (PINS) pulse and a matched-phase 90° PINS pulse to generate a SEmi-Adiabatic Matched-phase Spin echo (SEAMS) PINS sequence to address these issues. METHODS: We used the adiabatic Shinnar Le-Roux (SLR) algorithm to generate a 180° pulse. The SLR polynomials for the 180° pulse were then used to create a matched-phase 90° pulse. The pulses were sub-sampled to produce a SEAMS PINS pulse-pair and the performance of this pulse-pair was validated in phantoms and in vivo. RESULTS: Simulations as well as phantom and in vivo results, demonstrate multislice capability and improved B1 -insensitivity of the SEAMS PINS pulse-pair when operating at RF amplitudes of up to 40% above adiabatic threshold. CONCLUSION: The SEAMS PINS approach presented here achieves multislice spin echo profiles with improved B1 -insensitivity when compared with a conventional spin echo.


Assuntos
Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
17.
Magn Reson Med ; 75(5): 1949-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26041650

RESUMO

PURPOSE: To improve ultrahigh field diffusion-weighted imaging (DWI) in the presence of inhomogeneous transmit B1 field by designing a novel semi-adiabatic single-refocused DWI technique. METHODS: A 180° slice-selective, adiabatic radiofrequency (RF) pulse of 4 ms duration was designed using the adiabatic Shinnar-Le Roux algorithm. A matched-phase slice-selective 90° RF pulse of 8 ms duration was designed to compensate the nonlinear phase of the adiabatic 180° RF pulse. The resulting RF pulse combination, matched-phase adiabatic spin echo (MASE), was integrated into a single-shot echo planar DWI sequence. The performance of this sequence was compared with single-refocused Stejskal-Tanner (ST), twice-refocused spin echo (TRSE) and twice-refocused adiabatic spin echo (TRASE) in simulations, phantoms, and healthy volunteers at 7 Tesla (T). RESULTS: In regions with inhomogeneous B1 , MASE resulted in increased signal intensity compared with ST (up to 64%). Moderate increase in specific absorption rate (35-39%) was observed for adiabatic RF pulses. MASE resulted in higher signal homogeneity at 7T, leading to improved visualization of measures derived from diffusion-weighted images such as white matter tractography and track density images. CONCLUSION: Efficient adiabatic SLR pulses can be adapted to single-refocused DWI, leading to substantially improved signal uniformity when compared with conventional acquisitions.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Calibragem , Simulação por Computador , Imagem Ecoplanar , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
18.
Magn Reson Med ; 71(1): 75-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23401184

RESUMO

PURPOSE: The purpose of this work is to design an improved Slice-selective Tunable-flip AdiaBatic Low peak-power Excitation (STABLE) pulse with shorter duration and increased off-resonance immunity to make it suitable for use in a greater range of applications and at higher field strengths. An additional aim is to design a variant of this pulse to achieve B1 -insensitive, fat-suppressed excitation. METHODS: The adiabatic SLR algorithm was used to generate a more uniform spectral pulse envelope for this improved radiofrequency pulse for adiabatic slice-selective excitation, called STABLE-2. Pulse parameters were adjusted to design a version of STABLE-2 with a spectral null centered on lipids. RESULTS: In vivo images obtained of the human brain at 3 and 7 T demonstrate that STABLE-2 provides robust, uniform, slice-selective excitation over a range of B1 values. Phantom and in vivo knee images obtained at 3 T demonstrate the effectiveness of STABLE-2 for fat suppression. CONCLUSIONS: STABLE-2 achieves B1 -insensitive slice-selective excitation while providing greater off-resonance immunity and a shorter pulse duration, when compared to the original STABLE pulse. In particular, the 9.8-ms STABLE-2 pulse provides slice selectivity over 120 Hz whereas the 21-ms STABLE pulse is limited to 80 Hz off-resonance. B1 -Insensitive fat-suppressed excitation may also be achieved by using a variant of this pulse.


Assuntos
Tecido Adiposo/anatomia & histologia , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Articulação do Joelho/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Algoritmos , Humanos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
19.
Pain ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39132931

RESUMO

ABSTRACT: For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.

20.
Seizure ; 114: 33-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039805

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with high rates of mortality and morbidity in older adults, especially those with pre-existing conditions. There is little work investigating how neurological conditions affect older adults with COVID-19. We aimed to compare in-hospital outcomes, including mortality, in older adults with and without epilepsy. METHODS: This retrospective study in a large multicenter New York health system included consecutive older patients (age ≥65 years) either with or without epilepsy who were admitted with COVID-19 between 3/2020-5/2021. Epilepsy was identified using a validated International Classification of Disease (ICD) and antiseizure medicationbased case definition. Univariate comparisons were calculated using Chi-square, Fisher's exact, Mann-Whitney U, or Student's t-tests. Multivariable logistic regression models were generated to examine factors associated with mortality, discharge disposition and length of stay (LOS). RESULTS: We identified 5384 older adults admitted with COVID-19 of whom 173 (3.21 %) had epilepsy. Mean age was significantly lower in those with (75.44, standard deviation (SD): 7.23) compared to those without epilepsy (77.98, SD: 8.68, p = 0.007). Older adults with epilepsy were more likely to be ventilated (35.84 % vs. 16.18 %, p < 0.001), less likely to be discharged home (21.39 % vs. 43.12 %, p < 0.001), had longer median LOS (13 days vs. 8 days, p < 0.001), and had higher in-hospital death (35.84 % vs. 28.29 %, p = 0.030) compared to those without epilepsy. Epilepsy in older adults was associated with increased odds of in-hospital death (adjusted odds ratio (aOR), 1.55; 95 % CI 1.12-2.14, p = 0.032), non-routine discharge disposition (aOR, 3.34; 95 % CI 2.21-5.03, p < 0.001), and longer LOS (46.46 % 95 % CI 34 %-59 %, p < 0.001). CONCLUSIONS: In models that adjusted for multiple confounders including comorbidity and age, our study found that epilepsy was still associated with higher in-hospital mortality, longer LOS and worse discharge dispositions in older adults with COVID-19 higher in-hospital mortality, longer LOS and worse discharge dispositions in older adults with COVID-19. This work reinforces that epilepsy is a risk factor for worse outcomes in older adults admitted with COVID-19. Timely identification and treatment of COVID-19 in epilepsy may improve outcomes in older people with epilepsy.


Assuntos
COVID-19 , Epilepsia , Humanos , Idoso , Estudos Retrospectivos , SARS-CoV-2 , Mortalidade Hospitalar , Hospitalização , Tempo de Internação , Epilepsia/epidemiologia , Hospitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA