Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498105

RESUMO

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.

2.
Cell Biochem Funct ; 42(2): e3932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332678

RESUMO

Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.


Assuntos
Iduronato Sulfatase , Doenças Mitocondriais , Mucopolissacaridose II , Ubiquinona/análogos & derivados , Humanos , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Genisteína/farmacologia , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo
3.
Genet Mol Biol ; 47(1): e20230285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488524

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is caused by deficiency of alpha-N-acetylglucosaminidase, leading to storage of heparan sulphate. The disease is characterized by intellectual disability and hyperactivity, among other neurological and somatic features. Here we studied retrospective data from a total of 19 MPS IIIB patients from Brazil, aiming to evaluate disease progression. Mean age at diagnosis was 7.2 years. Speech delay was one of the first symptoms to be identified, around 2-3 years of age. Behavioral alterations include hyperactivity and aggressiveness, starting around age four. By the end of the first decade, patients lost acquired abilities such as speech and ability to walk. Furthermore, as disease progresses, respiratory, cardiovascular and joint abnormalities were found in more than 50% of the patients, along with organomegaly. Most common cause of death was respiratory problems. The disease progression was characterized in multiple systems, and hopefully these data will help the design of appropriate clinical trials and clinical management guidelines.

4.
Clin Genet ; 103(5): 580-584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36537231

RESUMO

Copy number variations (CNV) may represent a significant proportion of SPG4 and SPG3A diagnosis, the most frequent autosomal dominant subtypes of hereditary spastic paraplegias (HSP). We aimed to assess the frequency of CNVs in SPAST and ATL1 and to update the molecular epidemiology of HSP families in southern Brazil. A cohort study that included 95 Brazilian index cases with clinical suspicion of HSP was conducted between April 2011 and September 2022. Multiplex Ligation Dependent Probe Amplification (MLPA) was performed in 41 cases without defined diagnosis by different massive parallel sequencing techniques (MPS). Diagnosis was obtained in 57/95 (60%) index cases, 15/57 (26.3%) being SPG4. Most frequent autosomal recessive HSP subtypes were SPG7 followed by SPG11, SPG76 and cerebrotendinous xanthomatosis. No CNVs in SPAST and ATL1 were found. Copy number variations are rare among SPG4 and SPG3A families in Brazil. Considering the possibility of CNVs detection by specific algorithms with MPS data, we consider that this is likely the most cost-effective approach to investigate CNVs in these genes in low-risk populations, with MLPA being reserved as an orthogonal confirmatory test.


Assuntos
Variações do Número de Cópias de DNA , Paraplegia Espástica Hereditária , Espastina , Humanos , Brasil/epidemiologia , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/epidemiologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Espastina/genética
5.
Arch Biochem Biophys ; 737: 109541, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36754222

RESUMO

Mucopolysaccharidosis type IV A (MPS IVA) is an inborn error of the metabolism (IEM) caused by a deficiency of the enzyme N-acetylgalactosamine 6-sulfate sulfatase (GALNS). Since 2014, enzyme replacement therapy (ERT) is the recommended treatment for these patients. It is known that the inflammatory response is closely related to antioxidant defenses and oxidative stress, and literature shows involvement of oxidative stress in the pathogenesis of IEM. The aim of this study is to investigate the mechanisms of oxidative/nitrative stress and inflammation in patients with MPS IVA under long-term ERT. In the present work we investigate parameters of oxidative/nitrative stress in plasma and urine of MPS IVA patients under long-term ERT and controls, such as plasmatic nitrate/nitrite levels using the LDH Method, urinary di-tyrosine levels by fluorometric method, plasmatic content of sulfhydryl groups, urinary oxidized guanine species by ELISA kit and the plasmatic total antioxidant status. We next evaluated the plasmatic pro and anti-inflammatory cytokines concentration (IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α) and the expression of factors and enzymes Nrf-2, NF-κß and HO-1, main mediators between inflammation and oxidative stress. In concern to the oxidative/nitrative stress parameters, there was no significant difference between the groups MPS IVA patients under long-term ERT and controls, showing that there is no overproducing of RNS, no protein damage, no DNA/RNA oxidative damage and no modification in the non-enzymatic antioxidant capacity of a tissue to prevent the damage associated to free radical processes in these patients. It was also verified no significant difference between the MPS IVA patients under long-term ERT and controls groups regarding the production of proinflammatory cytokines. About anti-inflammatory cytokines, IL 10 was shown to be elevated in MPS IVA patients under long-term ERT in comparison to the control group. We next evaluated the genic expression of Nrf-2, NF-κß and HO-1and there was no significant difference between the MPS IVA patients under long-term ERT and control groups. In conclusion, MPS IVA patients under long term ERT are not in an inflammatory state and there is no alteration in genic expression in the genes analyzed which are involved in oxidative stress and inflammatory pathways. It is,however, important to consider that absence of imbalance of antioxidant defenses in MPS IVA patients under long term ERT is so far preliminary it is supported by methodologies that are not highly sensitive nor very accurate. Further experiments in future using state-of-the-art methodologies will corroborate these findings. Nevertheless, our results demonstrated the protective effect of the treatment in relation to the parameters studied and the importance of starting treatment in the early stages of the disease.


Assuntos
Condroitina Sulfatases , Mucopolissacaridose IV , Humanos , Mucopolissacaridose IV/tratamento farmacológico , Mucopolissacaridose IV/genética , Terapia de Reposição de Enzimas/métodos , Antioxidantes/farmacologia , Estresse Oxidativo , Citocinas/metabolismo , Inflamação , Condroitina Sulfatases/genética , Condroitina Sulfatases/metabolismo , Condroitina Sulfatases/uso terapêutico
6.
Metab Brain Dis ; 38(2): 519-529, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36029429

RESUMO

Mucopolysaccharidosis type II (MPS II or Hunter Syndrome) is a lysosomal disease caused by deficient degradation of glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate due to the deficiency of the enzyme iduronate-2-sulfatase. The main treatment for MPS II is the administration of the recombinant form of the enzyme, in a process known as enzyme replacement therapy (ERT). Oxidative damage can contribute to the pathophysiology of MPS II and treatment with ERT can reduce the effects of oxidative stress. For a better understanding of pathophysiology of MPS II, we evaluated biomarkers of mitochondrial dysfunction, DNA (Deoxyribonucleic acid) damage, antioxidant defenses, reactive species production and lysosomal size in IDS-deficient HEK 293 cells and investigate the in vitro effect of genistein and coenzyme Q10 (CoQ) on these biomarkers. An increase in the production of reactive species was demonstrated, as well as an increase in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, an increase in lysosomal volume and oxidative damage to DNA were verified. There was no evidence of a change in mitochondrial function in this cell model. In the HEK 293 (human embryonic kidney 293) knockout (KO) HP10 cell model we found that genistein at concentrations of 25 and 50 µm decreased in vitro the production of reactive species and the activity of the SOD enzyme, showing an antioxidant protective effect. Still, in these cells we verified that the coenzyme Q10 in the concentrations of 5 and 10 µm decreased in vitro the activity of the SOD enzyme and in the concentration of 10 µm decreased in vitro the DNA damage, also demonstrating antioxidant protection. In conclusion, MPS II knockout cells demonstrated oxidative stress and DNA damage and genistein, as well as coenzyme Q10, have been shown to have an important protective effect in vitro against these oxidative damages.


Assuntos
Mucopolissacaridose II , Humanos , Mucopolissacaridose II/tratamento farmacológico , Genisteína/farmacologia , Células HEK293 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Glicosaminoglicanos/metabolismo , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Superóxido Dismutase/metabolismo
7.
Adv Exp Med Biol ; 1429: 127-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486520

RESUMO

Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.


Assuntos
Edição de Genes , Doenças por Armazenamento dos Lisossomos , Humanos , Terapia Genética , Genoma , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Sistemas CRISPR-Cas/genética
8.
J Gene Med ; 24(4): e3410, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032067

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-l-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS: Liposomes were prepared by microfluidization, and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS: Monodisperse mucoadhesive complexes around 110 nm, which are able to efficiently permeate the PNM. In animals, the treatment led to a modest increase in IDUA activity in the lung, heart, and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues, and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION: Nonviral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly for other neurological disorders.


Assuntos
Mucopolissacaridose I , Animais , Encéfalo/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Iduronidase/genética , Iduronidase/metabolismo , Camundongos , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Plasmídeos
9.
Am J Med Genet A ; 188(3): 760-767, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806811

RESUMO

Mucopolysaccharidosis type IIIB is a rare autosomal recessive disorder characterized by deficiency of the enzyme N-acetyl-alpha-d-glucosaminidase (NAGLU), caused by biallelic pathogenic variants in the NAGLU gene, which leads to storage of heparan sulfate and a series of clinical consequences which hallmark is neurodegeneration. In this study clinical, epidemiological, and biochemical data were obtained from MPS IIIB patients diagnosed from 2004-2019 by the MPS Brazil Network ("Rede MPS Brasil"), which was created with the goal to provide an easily accessible and comprehensive investigation of all MPS types. One hundred and ten MPS IIIB patients were diagnosed during this period. Mean age at diagnosis was 10.9 years. Patients were from all over Brazil, with a few from abroad, with a possible cluster of MPS IIIB identified in Ecuador. All patients had increased urinary levels of glycosaminoglycans and low NAGLU activity in blood. Main clinical symptoms reported at diagnosis were coarse facies and neurocognitive regression. The most common variant was p.Leu496Pro (30% of alleles). MPS IIIB seems to be relatively frequent in Brazil, but patients are diagnosed later than in other countries, and reasons for that probably include the limited awareness about the disease by health professionals and the difficulties to access diagnostic tests, factors that the MPS Brazil Network is trying to mitigate.


Assuntos
Mucopolissacaridose III , Alelos , Brasil/epidemiologia , Criança , Heparitina Sulfato , Humanos , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/epidemiologia , Mucopolissacaridose III/genética
10.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34181873

RESUMO

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Encefalopatias Metabólicas/tratamento farmacológico , Carnitina/uso terapêutico , Glutaril-CoA Desidrogenase/deficiência , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Encefalopatias Metabólicas/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Catepsina D/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Glutaril-CoA Desidrogenase/genética , Asseio Animal/efeitos dos fármacos , Inflamação/genética , Interleucina-1beta/metabolismo , Locomoção/efeitos dos fármacos , Lisina/farmacologia , Camundongos Knockout , Teste de Campo Aberto/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
11.
J Inherit Metab Dis ; 44(3): 740-750, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33145772

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by mutations in the IDUA gene, that codifies the alpha-L-iduronidase enzyme, which deficiency leads to storage of glycosaminoglycans, with multiple clinical manifestations. One of the leading causes of death in MPS I patients are cardiac complications such as cardiac valve thickening, conduction abnormalities, myocardial dysfunction, and cardiac hypertrophy. The mechanism leading to cardiac dysfunction in MPS I is not entirely understood. In a previous study, we have demonstrated that losartan and propranolol improved the cardiac function in MPS I mice. Thus, we aimed to investigate whether the pathways influenced by these drugs may modulate the cardiac remodeling process in MPS I mice. According to our previous observation, losartan and propranolol restore the heart function, without altering valve thickness. MPS I mice presented reduced activation of AKT and ERK1/2, increased activity of cathepsins, but no alteration in metalloproteinase activity was observed. Animals treated with losartan showed a reduction in cathepsin activity and restored ERK1/2 activation. While both losartan and propranolol improved heart function, no mechanistic evidence was found for propranolol so far. Our results suggest that losartan or propranolol could be used to ameliorate the cardiac disease in MPS I and could be considered as adjuvant treatment candidates for therapy optimization.


Assuntos
Cardiopatias/patologia , Losartan/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucopolissacaridose I/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Iduronidase/genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Mutação
12.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
13.
Bioprocess Biosyst Eng ; 44(6): 1321-1332, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33646354

RESUMO

The antimicrobial activity of the metabolites produced by Fusarium oxysporum PR-33 in submerged culture was evaluated against Gram-positive and Gram-negative bacteria and yeasts. Metabolites were determined by HPLC-DAD-MS/MS. An extract was obtained following the removal of mycelium by centrifugation and lyophilisation of the supernatant. The compounds in this extract demonstrated broad-spectrum antimicrobial action, with rates of inhibition between 60 and 80%, depending on the species and extract tested. The major compounds of the extracts were identified as fusarinolic acid and its isomer [56.9% flask extract (FE)] and 59.2% bioreactor extract (BE), dehydrofusaric acid (35.7% FE and 31.6% BE), and fusaric acid (6.5% FE and 1.1% BE). Fusaric acid has been shown to be responsible for antimicrobial activity. The cytotoxicity of the extracts was evaluated in culture of HEK-293 and SH-SY5Y animal cells and toxicity of these extracts was verified even in the lowest tested concentrations. Therefore, our results indicate that the compounds identified exhibit potential as antimicrobial agents.


Assuntos
Anti-Infecciosos , Fusarium/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Leveduras/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fusarium/metabolismo , Células HEK293 , Humanos
14.
Gene Ther ; 27(1-2): 74-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31827259

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by deficiency of alpha-L-iduronidase (IDUA), leading to multisystemic accumulation of glycosaminoglycans (GAG). Untreated MPS I patients may die in the first decades of life, mostly due to cardiovascular and respiratory complications. We previously reported that the treatment of newborn MPS I mice with intravenous administration of lipossomal CRISPR/Cas9 complexes carrying the murine Idua gene aiming at the ROSA26 locus resulted in long-lasting IDUA activity and GAG reduction in various tissues. Following this, the present study reports the effects of gene editing in cardiovascular, respiratory, bone, and neurologic functions in MPS I mice. Bone morphology, specifically the width of zygomatic and femoral bones, showed partial improvement. Although heart valves were still thickened, cardiac mass and aortic elastin breaks were reduced, with normalization of aortic diameter. Pulmonary resistance was normalized, suggesting improvement in respiratory function. In contrast, behavioral abnormalities and neuroinflammation still persisted, suggesting deterioration of the neurological functions. The set of results shows that gene editing performed in newborn animals improved some manifestations of the MPS I disorder in bone, respiratory, and cardiovascular systems. However, further studies will be imperative to find better delivery strategies to reach "hard-to-treat" tissues to ensure better systemic and neurological effects.


Assuntos
Iduronidase/genética , Mucopolissacaridose I/terapia , RNA não Traduzido/genética , Animais , Animais Recém-Nascidos , Doenças Ósseas/genética , Sistemas CRISPR-Cas/genética , Sistema Cardiovascular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Terapia Genética/métodos , Glicosaminoglicanos/metabolismo , Iduronidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose I/genética , Mucopolissacaridose I/fisiopatologia , Fenótipo , RNA não Traduzido/metabolismo
15.
Metab Brain Dis ; 35(7): 1231-1236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623553

RESUMO

Hunter syndrome or mucopolysaccharidosis type II (MPS II) is an X-linked recessive disease caused by the deficiency of iduronate 2-sulfatase (IDS), leading to storage of undegraded heparan and dermatan sulfate. Patients with the severe form present neurological abnormalities, but the mechanisms of such alterations are unknown. Here, we hypothesized that the undegraded substances found in this disease could be recognized as damage-associated molecular patterns (DAMPS), leading to activation of the inflammasome. Brains from 2 and 5 months normal and MPS II mice were studied. We observed an increase in cathepsin B activity in the brain tissue and leakage of this enzyme from the lysosome to the cytoplasm in a MPS II neuronal cell line, which is a known activator of the inflammasome. Furthermore, Caspase-1 activity and IL-1-beta levels were elevated at 5 months, confirming that this pathway is indeed altered. Our results suggest that undegraded GAG activate the inflammasome pathway in MPS II and future studies could focus on blocking such pathway to better understand the role of this process to the pathogenesis of MPS II.


Assuntos
Encéfalo/metabolismo , Inflamassomos/metabolismo , Mucopolissacaridose II/metabolismo , Animais , Caspase 1/metabolismo , Catepsina B/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
16.
Clin Exp Ophthalmol ; 48(3): 334-342, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925897

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency, resulting in accumulation of glycosaminoglycans (GAG). Ophthalmological manifestations are common in MPS I patients and often lead to visual impairment. Accumulation of GAG in corneal or retinal tissues reduces vision causing corneal opacity and neurosensory complications. One available treatment for MPS I patients is enzyme replacement therapy (ERT), but the results of such treatment on eye disease are still debatable. Therefore, we aimed to determine the progression of ocular manifestations as well as the effectiveness of intravenous ERT in MPS I. METHODS: Corneal and retinal analyses were perform in eyes from 2- to 8-month normal and MPS I mice. Some MPS I mice received ERT (1.2 mg/kg of laronidase) every 2 weeks from 6 to 8 months and histological findings were compared with controls. Additionally, cornea from two MPS I patients under ERT were evaluated. RESULTS: Mouse corneal tissues had GAG accumulation early in life. In the retina, we found a progressive loss of photoreceptor cells, starting at 6 months. ERT did not improve or stabilize the histological abnormalities. MPS I patients, despite being on ERT for over a decade, presented GAG accumulation in the cornea, corneal thickening, visual loss and needed corneal transplantation. CONCLUSION: We provide data on the time course of ocular alteration in MPS I mice. Our results also suggest that ERT is not effective in treating the progressive ocular manifestations in MPS I mice and fails to prevent corneal abnormalities in patients.


Assuntos
Doenças da Córnea , Mucopolissacaridose I , Animais , Doenças da Córnea/complicações , Terapia de Reposição de Enzimas , Glicosaminoglicanos/uso terapêutico , Humanos , Iduronidase/uso terapêutico , Camundongos , Mucopolissacaridose I/complicações , Mucopolissacaridose I/tratamento farmacológico
17.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941077

RESUMO

Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.


Assuntos
Edição de Genes , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Humanos
18.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093427

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of ß-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Catepsina B/metabolismo , Córtex Cerebral/metabolismo , Mucopolissacaridose I/metabolismo , Células Piramidais/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Catepsina B/genética , Córtex Cerebral/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Células Piramidais/patologia
19.
Heart Vessels ; 34(2): 290-295, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30136169

RESUMO

Mucopolysaccharidoses (MPS) are disorders characterized by impaired glycosaminoglycan (GAG) catabolism as a consequence of a deficiency or the absence of lysosomal enzymes directly involved in their degradation. Multiple organ systems are involved in MPS, including the cardiovascular system. Recently, aortic root dilatation (ARD) has been described in these patients. Thus, we reviewed aortic root diameter measurements in 69 MPS patients from a single center from 2000 to 2016. Aortic root diameter z scores were calculated based on data published by Colan et al. according to the body surface area (BSA) determined using the Haycock formula. The overall incidence of ARD in MPS patients was 39.1%. Higher mean z scores were present in patients with MPS IVA and VI when compared to MPS I and II. Aortic root z scores were higher in older MPS IVA patients, which may suggest a progressive ARD change in this MPS type. No significant differences were found before and after enzyme replacement therapy (ERT) in 11 patients with available data (2 with MPS I; 4 with MPS II; 2 with MPS IVA, and 3 with MPS VI). This work provides further evidence that ARD is common in different types of MPS, being especially evident in MPS IVA, but with a significant occurrence also in MPS VI.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/etiologia , Dissecção Aórtica/etiologia , Terapia de Reposição de Enzimas/métodos , Mucopolissacaridoses/complicações , Adolescente , Dissecção Aórtica/diagnóstico , Aneurisma da Aorta Torácica/diagnóstico , Ecocardiografia , Feminino , Seguimentos , Humanos , Masculino , Mucopolissacaridoses/tratamento farmacológico , Fatores de Tempo
20.
Sensors (Basel) ; 19(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248004

RESUMO

Child-Robot Interaction (CRI) has become increasingly addressed in research and applications. This work proposes a system for emotion recognition in children, recording facial images by both visual (RGB-red, green and blue) and Infrared Thermal Imaging (IRTI) cameras. For this purpose, the Viola-Jones algorithm is used on color images to detect facial regions of interest (ROIs), which are transferred to the thermal camera plane by multiplying a homography matrix obtained through the calibration process of the camera system. As a novelty, we propose to compute the error probability for each ROI located over thermal images, using a reference frame manually marked by a trained expert, in order to choose that ROI better placed according to the expert criteria. Then, this selected ROI is used to relocate the other ROIs, increasing the concordance with respect to the reference manual annotations. Afterwards, other methods for feature extraction, dimensionality reduction through Principal Component Analysis (PCA) and pattern classification by Linear Discriminant Analysis (LDA) are applied to infer emotions. The results show that our approach for ROI locations may track facial landmarks with significant low errors with respect to the traditional Viola-Jones algorithm. These ROIs have shown to be relevant for recognition of five emotions, specifically disgust, fear, happiness, sadness, and surprise, with our recognition system based on PCA and LDA achieving mean accuracy (ACC) and Kappa values of 85.75% and 81.84%, respectively. As a second stage, the proposed recognition system was trained with a dataset of thermal images, collected on 28 typically developing children, in order to infer one of five basic emotions (disgust, fear, happiness, sadness, and surprise) during a child-robot interaction. The results show that our system can be integrated to a social robot to infer child emotions during a child-robot interaction.


Assuntos
Emoções/fisiologia , Face/diagnóstico por imagem , Expressão Facial , Processamento de Imagem Assistida por Computador , Algoritmos , Criança , Análise Discriminante , Medo/fisiologia , Feminino , Humanos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA