Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552066

RESUMO

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Criança , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caenorhabditis elegans/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Megalencefalia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
3.
Am J Hum Genet ; 109(10): 1885-1893, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36103875

RESUMO

GABAB receptors are obligatory heterodimers responsible for prolonged neuronal inhibition in the central nervous system. The two receptor subunits are encoded by GABBR1 and GABBR2. Variants in GABBR2 have been associated with a Rett-like phenotype (MIM: 617903), epileptic encephalopathy (MIM: 617904), and milder forms of developmental delay with absence epilepsy. To date, however, no phenotypes associated with pathogenic variants of GABBR1 have been established. Through GeneMatcher, we have ascertained four individuals who each have a monoallelic GABBR1 de novo non-synonymous variant; these individuals exhibit motor and/or language delay, ranging from mild to severe, and in one case, epilepsy. Further phenotypic features include varying degrees of intellectual disability, learning difficulties, autism, ADHD, ODD, sleep disorders, and muscular hypotonia. We functionally characterized the four de novo GABBR1 variants, p.Glu368Asp, p.Ala397Val, p.Ala535Thr, and p.Gly673Asp, in transfected HEK293 cells. GABA fails to efficiently activate the variant receptors, most likely leading to an increase in the excitation/inhibition balance in the central nervous system. Variant p.Gly673Asp in transmembrane domain 3 (TMD3) renders the receptor completely inactive, consistent with failure of the receptor to reach the cell surface. p.Glu368Asp is located near the orthosteric binding site and reduces GABA potency and efficacy at the receptor. GABA exhibits normal potency but decreased efficacy at the p.Ala397Val and p.Ala535Thr variants. Functional characterization of GABBR1-related variants provides a rationale for understanding the severity of disease phenotypes and points to possible therapeutic strategies.


Assuntos
Epilepsia , Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Receptores de GABA-B , Humanos , Epilepsia/genética , Ácido gama-Aminobutírico/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-B/genética
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121658

RESUMO

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismo
5.
Genet Med ; 26(3): 101035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059438

RESUMO

PURPOSE: Clinically ascertained variants are under-utilized in neurodevelopmental disorder research. We established the Brain Gene Registry (BGR) to coregister clinically identified variants in putative brain genes with participant phenotypes. Here, we report 179 genetic variants in the first 179 BGR registrants and analyze the proportion that were novel to ClinVar at the time of entry and those that were absent in other disease databases. METHODS: From 10 academically affiliated institutions, 179 individuals with 179 variants were enrolled into the BGR. Variants were cross-referenced for previous presence in ClinVar and for presence in 6 other genetic databases. RESULTS: Of 179 variants in 76 genes, 76 (42.5%) were novel to ClinVar, and 62 (34.6%) were absent from all databases analyzed. Of the 103 variants present in ClinVar, 37 (35.9%) were uncertain (ClinVar aggregate classification of variant of uncertain significance or conflicting classifications). For 5 variants, the aggregate ClinVar classification was inconsistent with the interpretation from the BGR site-provided classification. CONCLUSION: A significant proportion of clinical variants that are novel or uncertain are not shared, limiting the evidence base for new gene-disease relationships. Registration of paired clinical genetic test results with phenotype has the potential to advance knowledge of the relationships between genes and neurodevelopmental disorders.


Assuntos
Bases de Dados Genéticas , Variação Genética , Humanos , Variação Genética/genética , Testes Genéticos/métodos , Fenótipo , Encéfalo
6.
Genet Med ; 26(9): 101166, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38767059

RESUMO

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in 4 siblings. METHODS: We identified 5 individuals from 3 unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA sequencing and metabolomic data sets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data shed light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.


Assuntos
Complexo de Golgi , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento , Peixe-Zebra , Humanos , Peixe-Zebra/genética , Animais , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/genética , Masculino , Feminino , Criança , Fenótipo , Pré-Escolar , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/metabolismo , Linhagem , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
7.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928709

RESUMO

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Assuntos
Desmetilação do DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Dioxigenases/deficiência , Adulto , Sequência de Aminoácidos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Dioxigenases/química , Dioxigenases/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Linhagem , Conformação Proteica , Homologia de Sequência , Adulto Jovem
8.
Mol Genet Metab ; 136(1): 65-73, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361529

RESUMO

We describe a proband evaluated through the Undiagnosed Diseases Network (UDN) who presented with microcephaly, developmental delay, and refractory epilepsy with a de novo p.Ala47Thr missense variant in the protein phosphatase gene, PPP5C. This gene has not previously been associated with a Mendelian disease, and based on the population database, gnomAD, the gene has a low tolerance for loss-of-function variants (pLI = 1, o/e = 0.07). We functionally evaluated the PPP5C variant in C. elegans by knocking the variant into the orthologous gene, pph-5, at the corresponding residue, Ala48Thr. We employed assays in three different biological processes where pph-5 was known to function through opposing the activity of genes, mec-15 and sep-1. We demonstrated that, in contrast to control animals, the pph-5 Ala48Thr variant suppresses the neurite growth phenotype and the GABA signaling defects of mec-15 mutants, and the embryonic lethality of sep-1 mutants. The Ala48Thr variant did not display dominance and behaved similarly to the reference pph-5 null, indicating that the variant is likely a strong hypomorph or complete loss-of-function. We conclude that pph-5 Ala48Thr is damaging in C. elegans. By extension in the proband, PPP5C p.Ala47Thr is likely damaging, the de novo dominant presentation is consistent with haplo-insufficiency, and the PPP5C variant is likely responsible for one or more of the proband's phenotypes.


Assuntos
Deficiências do Desenvolvimento , Proteínas F-Box , Microcefalia , Proteínas Nucleares , Fosfoproteínas Fosfatases , Convulsões , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Criança , Deficiências do Desenvolvimento/genética , Proteínas F-Box/genética , Humanos , Microcefalia/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas Fosfatases/genética , Convulsões/genética , Separase/genética
9.
BMC Biol ; 19(1): 147, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320968

RESUMO

BACKGROUND: Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS: The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS: These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.


Assuntos
Cromossomos Humanos Par 15 , Variações do Número de Cópias de DNA , Receptor Nicotínico de Acetilcolina alfa7/genética , Cromossomos Humanos Par 15/genética , Humanos , Masculino , Neurônios , Fenótipo
10.
Am J Hum Genet ; 103(6): 968-975, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30414627

RESUMO

Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a rare disorder of unknown etiology. It has been proposed to be autosomal-recessive and is characterized by variable clinical features, such as intrauterine growth restriction and poor postnatal weight gain, characteristic facial features (triangular appearance to the face, convex nasal profile or pinched nose, and small mouth), widened fontanelles, pseudohydrocephalus, prominent scalp veins, lipodystrophy, and teeth abnormalities. A previous report described a single WRS patient with bi-allelic truncating and splicing variants in POLR3A. Here we present seven additional infants, children, and adults with WRS and bi-allelic truncating and/or splicing variants in POLR3A. POLR3A, the largest subunit of RNA polymerase III, is a DNA-directed RNA polymerase that transcribes many small noncoding RNAs that regulate transcription, RNA processing, and translation. Bi-allelic missense variants in POLR3A have been associated with phenotypes distinct from WRS: hypogonadotropic hypogonadism and hypomyelinating leukodystrophy with or without oligodontia. Our findings confirm the association of bi-allelic POLR3A variants with WRS, expand the clinical phenotype of WRS, and suggest specific POLR3A genotypes associated with WRS and hypomyelinating leukodystrophy.


Assuntos
Retardo do Crescimento Fetal/genética , Variação Genética/genética , Perda de Heterozigosidade/genética , Progéria/genética , RNA Polimerase III/genética , Adolescente , Adulto , Alelos , Pré-Escolar , Feminino , Genótipo , Humanos , Fenótipo , Adulto Jovem
11.
Genet Med ; 23(6): 1075-1085, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580225

RESUMO

PURPOSE: Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS: We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS: We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION: The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.


Assuntos
Genômica , Doenças não Diagnosticadas , Biologia Computacional , Testes Genéticos , Genoma , Humanos , Software , Fluxo de Trabalho
12.
Mol Genet Metab ; 134(1-2): 195-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34412939

RESUMO

Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.


Assuntos
Proteínas de Transporte/genética , Epilepsia/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Criança , Feminino , Edição de Genes , Humanos , Patologia Molecular , Canais de Potássio/metabolismo
13.
Am J Med Genet A ; 185(2): 544-548, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184947

RESUMO

Chromodomain helicase DNA-binding protein 7 (CHD7) pathogenic variants are identified in more than 90% of infants and children with CHARGE (Coloboma of the iris, retina, and/or optic disk; congenital Heart defects, choanal Atresia, Retardation of growth and development, Genital hypoplasia, and characteristic outer and inner Ear anomalies and deafness) syndrome. Approximately, 10% of cases have no known genetic cause identified. We report a male child with clinical features of CHARGE syndrome and nondiagnostic genetic testing that included chromosomal microarray, CHD7 sequencing and deletion/duplication analysis, SEMA3E sequencing, and trio exome and whole-genome sequencing (WGS). We used a comprehensive clinical assessment, genome-wide methylation analysis (GMA), reanalysis of WGS data, and CHD7 RNA studies to discover a novel variant that causes CHD7 haploinsufficiency. The 7-year-old Hispanic male proband has typical phenotypic features of CHARGE syndrome. GMA revealed a CHD7-associated epigenetic signature. Reanalysis of the WGS data with focused bioinformatic analysis of CHD7 detected a novel, de novo 15 base pair deletion in Intron 4 of CHD7 (c.2239-20_2239-6delGTCTTGGGTTTTTGT [NM_017780.3]). Using proband RNA, we confirmed that this novel deletion causes CHD7 haploinsufficiency by disrupting the canonical 3' splice site and introducing a premature stop codon. Integrated genomic, epigenomic, and transcriptome analyses discovered a novel CHD7 variant that causes CHARGE syndrome.


Assuntos
Síndrome CHARGE/genética , Atresia das Cóanas/genética , Coloboma/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Cardiopatias Congênitas/genética , Síndrome CHARGE/complicações , Síndrome CHARGE/patologia , Criança , Pré-Escolar , Atresia das Cóanas/complicações , Atresia das Cóanas/patologia , Coloboma/complicações , Coloboma/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Lactente , Íntrons/genética , Masculino , Mutação/genética , Fenótipo , Sequenciamento do Exoma
14.
Am J Med Genet A ; 185(7): 2190-2197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931933

RESUMO

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2), a type of arthrogryposis multiplex congenita (AMC), is characterized by congenital joint contractures, prenatal fractures of long bones, and respiratory distress and results from biallelic variants in ASCC1. Here, we describe an infant with severe, diffuse hypotonia, congenital contractures, and pulmonary hypoplasia characteristic of SMABF2, with the unique features of cleft palate, small spleen, transverse liver, and pulmonary thromboemboli with chondroid appearance. This infant also had impaired coagulation with diffuse petechiae and ecchymoses which has only been reported in one other infant with AMC. Using trio whole genome sequencing, our proband was identified to have biallelic variants in ASCC1. Using deep next generation sequencing of parental cDNA, we characterized alteration of splicing encoded by the novel, maternally inherited ASCC1 variant (c.297-8 T > G) which provides a mechanism for functional pathogenicity. The paternally inherited ASCC1 variant is a rare nonsense variant (c.466C > T; p.Arg156*) that has been previously identified in one other infant with AMC. This report extends the phenotypic characteristics of ASCC1-associated AMC (SMABF2) and describes a novel intronic variant that partially disrupts RNA splicing.


Assuntos
Artrogripose/genética , Proteínas de Transporte/genética , Atrofia Muscular Espinal/genética , Artrogripose/diagnóstico por imagem , Artrogripose/fisiopatologia , Códon sem Sentido/genética , Feminino , Humanos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/fisiopatologia , Sequenciamento Completo do Genoma
15.
Am J Med Genet A ; 182(5): 1053-1065, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083401

RESUMO

Pathogenic variants in KMT2D, which encodes lysine specific methyltransferase 2D, cause autosomal dominant Kabuki syndrome, associated with distinctive dysmorphic features including arched eyebrows, long palpebral fissures with eversion of the lower lid, large protuberant ears, and fetal finger pads. Most disease-causing variants identified to date are putative loss-of-function alleles, although 15-20% of cases are attributed to missense variants. We describe here four patients (including one previously published patient) with de novo KMT2D missense variants and with shared but unusual clinical findings not typically seen in Kabuki syndrome, including athelia (absent nipples), choanal atresia, hypoparathyroidism, delayed or absent pubertal development, and extreme short stature. These individuals also lack the typical dysmorphic facial features found in Kabuki syndrome. Two of the four patients had severe interstitial lung disease. All of these variants cluster within a 40-amino-acid region of the protein that is located just N-terminal of an annotated coiled coil domain. These findings significantly expand the phenotypic spectrum of features associated with variants in KMT2D beyond those seen in Kabuki syndrome and suggest a possible new underlying disease mechanism for these patients.


Assuntos
Anormalidades Múltiplas/genética , Mama/anormalidades , Anormalidades Congênitas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Predisposição Genética para Doença , Doenças Hematológicas/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Mama/diagnóstico por imagem , Mama/fisiopatologia , Doenças Mamárias , Criança , Anormalidades Congênitas/diagnóstico por imagem , Anormalidades Congênitas/fisiopatologia , Face/diagnóstico por imagem , Face/patologia , Feminino , Doenças Hematológicas/diagnóstico por imagem , Doenças Hematológicas/patologia , Humanos , Mutação com Perda de Função/genética , Masculino , Mutação/genética , Fenótipo , Doenças Vestibulares/diagnóstico por imagem , Doenças Vestibulares/patologia , Sequenciamento do Exoma , Adulto Jovem
16.
Am J Med Genet B Neuropsychiatr Genet ; 183(4): 227-233, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32267091

RESUMO

Variations in MYT1L, a gene encoding a transcription factor expressed in the brain, have been associated with autism, intellectual disability, and schizophrenia. Here we provide an updated review of published reports of neuropsychiatric correlates of loss of function and duplication of MYT1L. Of 27 duplications all were partial; 33% were associated exclusively with schizophrenia, and the chromosomal locations of schizophrenia-associated duplications exhibited a distinct difference in pattern-of-location from those associated with autism and/or intellectual disability. Of 51 published heterozygous loss of function variants, all but one were associated with intellectual disability, autism, or both, and one resulted in no neuropsychiatric diagnosis. There were no reports of schizophrenia associated with loss of function variants of MYT1L (Fisher's exact p < .00001, for contrast with all reported duplications). Although the precise function of the various mutations remains unspecified, these data collectively establish the candidacy of MYT1L as a reciprocal mutation, in which schizophrenia may be engendered by partial duplications, typically involving the 3' end of the gene, while developmental disability-notably autism-is associated with both loss of function and partial duplication. Future research on the specific effects of contrasting mutations in MYT1L may provide insight into the causal origins of autism and schizophrenia.


Assuntos
Transtorno Autístico/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Fatores de Transcrição/genética , Deleção de Genes , Duplicação Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Mutação , Fenótipo
17.
Pediatr Res ; 84(3): 435-441, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967526

RESUMO

BACKGROUND: Biallelic deleterious variants in RTTN, which encodes rotatin, are associated with primary microcephaly, polymicrogyria, seizures, intellectual disability, and primordial dwarfism in human infants. METHODS AND RESULTS: We performed exome sequencing of an infant with primary microcephaly, pontocerebellar hypoplasia, and intractable seizures and his healthy, unrelated parents. We cultured the infant's fibroblasts to determine primary ciliary phenotype. RESULTS: We identified biallelic variants in RTTN in the affected infant: a novel missense variant and a rare, intronic variant that results in aberrant transcript splicing. Cultured fibroblasts from the infant demonstrated reduced length and number of primary cilia. CONCLUSION: Biallelic variants in RTTN cause primary microcephaly in infants. Functional characterization of primary cilia length and number can be used to determine pathogenicity of RTTN variants.


Assuntos
Encéfalo/anormalidades , Proteínas de Transporte/genética , Doenças Cerebelares/genética , Microcefalia/genética , Convulsões/genética , Alelos , Encéfalo/diagnóstico por imagem , Proteínas de Ciclo Celular , Cílios , Exoma , Evolução Fatal , Fibroblastos/metabolismo , Deleção de Genes , Variação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Insuficiência Respiratória
18.
Hum Mutat ; 38(11): 1477-1484, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28726266

RESUMO

Biallelic GLDN mutations have recently been identified among infants with lethal congenital contracture syndrome 11 (LCCS11). GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report six infants and children from four unrelated families with biallelic GLDN mutations, four of whom survived beyond the neonatal period into infancy, childhood, and late adolescence with intensive care and chronic respiratory and nutritional support. Our findings expand the genotypic and phenotypic spectrum of LCCS11 and demonstrate that the condition may not necessarily be lethal in the neonatal period.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Genes Letais , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , Artrogripose/mortalidade , Biópsia , Análise Mutacional de DNA , Evolução Fatal , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Raízes Nervosas Espinhais/ultraestrutura , Sequenciamento do Exoma
19.
Genet Med ; 19(9): 1040-1048, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28252636

RESUMO

PURPOSE: Evaluation of the clinician's role in the optimal interpretation of clinical exome sequencing (ES) results. METHODS: Retrospective chart review of the first 155 patients who underwent clinical ES in our Exome Clinic and direct interaction with the ordering geneticist to evaluate the process of interpretation of results. RESULTS: The most common primary indication was neurodevelopmental problems (~66%), followed by multiple congenital anomalies (~10%). Based on sequencing data, the overall diagnostic yield was 36%. After assessment by the medical geneticist, incorporation of detailed phenotypic and molecular data, and utilization of additional diagnostic modalities, the final diagnostic yield increased to 43%. Seven patients in our cohort were included in initial case series that described novel genetic syndromes, and 23% of patients were involved in subsequent research studies directly related to their results or involved in efforts to move beyond clinical ES for diagnosis. Clinical management was directly altered due to the ES findings in 12% of definitively diagnosed cases. CONCLUSIONS: Our results emphasize the usefulness of ES, demonstrate the significant role of the medical geneticist in the diagnostic process of patients undergoing ES, and illustrate the benefits of postanalytical diagnostic work-up in solving the "diagnostic odyssey." Genet Med advance online publication 02 March 2017.


Assuntos
Sequenciamento do Exoma , Exoma , Prova Pericial , Testes Genéticos , Genética Médica , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Aconselhamento Genético , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genética Médica/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Médicos , Estudos Retrospectivos , Adulto Jovem
20.
PLoS Genet ; 10(3): e1004258, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24676022

RESUMO

Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Colo/anormalidades , Heterozigoto , Pseudo-Obstrução Intestinal/genética , Mutação/genética , Bexiga Urinária/anormalidades , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Colo/patologia , Exoma , Feminino , Humanos , Pseudo-Obstrução Intestinal/patologia , Masculino , Músculo Liso/metabolismo , Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA