RESUMO
In this retrospective study, BRAF mutation status did not correlate with disease extent or (event-free) survival in 156 adults with Langerhans cell histiocytosis. BRAFV600E was associated with an increased incidence of second malignancies, often comprising hematological cancers, which may be clonally related.
Assuntos
Histiocitose de Células de Langerhans , Segunda Neoplasia Primária , Humanos , Adulto , Segunda Neoplasia Primária/epidemiologia , Segunda Neoplasia Primária/genética , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Incidência , Histiocitose de Células de Langerhans/epidemiologia , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , MutaçãoRESUMO
AIMS: Stereotactic arrhythmia radiotherapy (STAR) is suggested as potentially effective and safe treatment for patients with therapy-refractory ventricular tachycardia (VT). However, the current prospective knowledge base and experience with STAR is limited. In this study we aimed to prospectively evaluate the efficacy and safety of STAR. METHODS AND RESULTS: The StereoTactic Arrhythmia Radiotherapy in the Netherlands no.1 was a pre-post intervention study to prospectively evaluate efficacy and safety of STAR. In patients with therapy-refractory VT, the pro-arrhythmic region was treated with a 25 Gy single radiotherapy fraction. The main efficacy measure was a reduction in the number of treated VT-episodes by ≥50%, comparing the 12 months before and after treatment (or end of follow-up, excluding a 6-week blanking period). The study was deemed positive when ≥50% of patients would meet this criterion. Safety evaluation included left ventricular ejection fraction, pulmonary function, and adverse events. Six male patients with an ischaemic cardiomyopathy were enrolled, and median age was 73 years (range 54-83). Median left ventricular ejection fraction was 38% (range 24-52). The median planning target volume was 187 mL (range 93-372). Four (67%) patients completed the 12-month follow-up, and two patients died (not STAR related) during follow-up. The main efficacy measure of ≥50% reduction in treated VT-episodes at the end of follow-up was achieved in four patients (67%). The median number of treated VT-episodes was reduced by 87%. No reduction in left ventricular ejection fraction or pulmonary function was observed. No treatment related serious adverse events occurred. CONCLUSIONS: STAR resulted in a ≥ 50% reduction in treated VT-episodes in 4/6 (67%) patients. No reduction in cardiac and pulmonary function nor treatment-related serious adverse events were observed during follow-up. CLINICAL TRIAL REGISTRATION: Netherlands Trial Register-NL7510.
Assuntos
Radiocirurgia , Taquicardia Ventricular , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Coração , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Volume Sistólico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/radioterapia , Resultado do Tratamento , Função Ventricular EsquerdaRESUMO
The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs.
Assuntos
Ablação por Cateter , Taquicardia Ventricular , Humanos , Estudos Prospectivos , Arritmias Cardíacas , Ventrículos do Coração , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Resultado do TratamentoRESUMO
Inhomogeneities in radiotherapy dose distributions covering the vertebrae in children can produce long-term spinal problems, including kyphosis, lordosis, scoliosis, and hypoplasia. In the published literature, many often interrelated variables have been reported to affect the extent of potential radiotherapy damage to the spine. Articles published in the 2D and 3D radiotherapy era instructed radiation oncologists to avoid dose inhomogeneity over growing vertebrae. However, in the present era of highly conformal radiotherapy, steep dose gradients over at-risk structures can be generated and thus less harm is caused to patients. In this report, paediatric radiation oncologists from leading centres in 11 European countries have produced recommendations on how to approach dose coverage for target volumes that are adjacent to vertebrae to minimise the risk of long-term spinal problems. Based on available information, it is advised that homogeneous vertebral radiotherapy doses should be delivered in children who have not yet finished the pubertal growth spurt. If dose fall-off within vertebrae cannot be avoided, acceptable dose gradients for different age groups are detailed here. Vertebral delineation should include all primary ossification centres and growth plates, and therefore include at least the vertebral body and arch. For partial spinal radiotherapy, the number of irradiated vertebrae should be restricted as much as achievable, particularly at the thoracic level in young children (<6 years old). There is a need for multicentre research on vertebral radiotherapy dose distributions for children, but until more valid data become available, these recommendations can provide a basis for daily practice for radiation oncologists who have patients that require vertebral radiotherapy.
Assuntos
Neoplasias/radioterapia , Pediatria/normas , Dosagem Radioterapêutica/normas , Radioterapia Conformacional/normas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasias/patologia , Radioterapia (Especialidade)/normasRESUMO
BACKGROUND: While four-dimensional computed tomography (4DCT) is extensively used in adults, reluctance remains to use 4DCT in children. Day-to-day (interfractional) variability and irregular respiration (intrafractional variability) have shown to be limiting factors of 4DCT effectiveness in adults. In order to evaluate 4DCT applicability in children, the purpose of this study is to quantify inter- and intrafractional variability of respiratory motion in children and adults. The pooled analysis enables a solid comparison to reveal if 4DCT application for planning purposes in children could be valid. METHODS/MATERIALS: We retrospectively included 90 patients (45 children and 45 adults), for whom the diaphragm was visible on abdominal/thoracic free-breathing cone beam CTs (480 pediatric, 524 adult CBCTs). For each CBCT, the cranial-caudal position of end-exhale and end-inhale positions of the right diaphragm dome were manually selected in the projection images. The difference in position between both phases defines the amplitude. Cycle time equaled inspiratory plus expiratory time. We analyzed the variability of the inter- and intrafractional respiratory-induced diaphragm motion. RESULTS: Ranges of respiratory motion characteristics were large in both children and adults (amplitude: 4-17 vs 5-24 mm, cycle time 2.1-3.9 vs 2.7-6.5 s). The mean amplitude was slightly smaller in children than in adults (10.7 vs 12.3 mm; P = 0.06). Interfractional amplitude variability was statistically significantly smaller in children than in adults (1.4 vs 2.2 mm; P = 0.00). Mean cycle time was statistically significantly shorter in children (2.9 vs 3.6 s; P = 0.00). Additionally, intrafractional cycle time variability was statistically significantly smaller in children (0.5 vs 0.7 s; P = 0.00). CONCLUSIONS: Overall variability is smaller in children than in adults, indicating that respiratory motion is more regular in children than in adults. This implies that a single pretreatment 4DCT could be a good representation of daily respiratory motion in children and will be at least equally beneficial for planning purposes as it is in adults.
Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Adulto JovemRESUMO
In retrospective radiation treatment (RT) dosimetry, a surrogate anatomy is often used for patients without 3D CT. To gain insight in what the crucial aspects in a surrogate anatomy are to enable accurate dose reconstruction, we investigated the relation of patient characteristics and internal anatomical features with deviations in reconstructed organ dose using surrogate patient's CT scans. Abdominal CT scans of 35 childhood cancer patients (age: 2.1-5.6 yr; 17 boys, 18 girls) undergoing RT during 2004-2016 were included. Based on whether an intact right or left kidney is present in the CT scan, two groups were formed each containing 24 patients. From each group, four CTs associated with Wilms' tumor RT plans with an anterior-posterior-posterior-anterior field setup were selected as references. For each reference, a 2D digitally reconstructed radiograph was computed from the reference CT to simulate a 2D radiographic image and dose reconstruction was performed on the other CTs in the respective group. Deviations in organ mean dose (DEmean) of the reconstructions versus the references were calculated, as were deviations in patient characteristics (i.e. age, height, weight) and in anatomical features including organ volume, location (in 3D), and spatial overlaps. Per reference, the Pearson's correlation coefficient between deviations in DEmean and patient characteristics/features were studied. Deviation in organ locations and DEmean for the liver, spleen, and right kidney were moderately correlated (R2 > 0.5) for 8/8, 5/8, and 3/4 reference plans, respectively. Deviations in organ volume or spatial overlap and DEmean for the right and left kidney were weakly correlated (0.3 < R2 < 0.5) in 4/4 and 1/4 reference plans. No correlations (R2 < 0.3) were found between deviations in age or height and DEmean. Therefore, the performance of organ dose reconstruction using surrogate patients' CT scans is primarily related to deviation in organ location, followed by volume and spatial overlap. Further, results were plan dependent.
Assuntos
Neoplasias Renais/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Tumor de Wilms/radioterapia , Pré-Escolar , Correlação de Dados , Feminino , Humanos , Imageamento Tridimensional , Rim/anatomia & histologia , Rim/diagnóstico por imagem , Fígado/anatomia & histologia , Fígado/diagnóstico por imagem , Masculino , Radiometria , Estudos Retrospectivos , Baço/anatomia & histologia , Baço/diagnóstico por imagemRESUMO
Pediatric mixed-lineage leukemia (MLL)-rearranged acute monoblastic leukemia with t(9;11)(p22;q23) has a favorable outcome compared with other MLL-rearranged AML. The biologic background for this difference remains unknown. Therefore, we compared gene expression profiles (GEPs; Affymetrix HGU133 + 2.0) of 26 t(9;11)(p22;q23) patients with 42 other MLL-rearranged AML patients to identify differentially expressed genes. IGSF4, a cell-cell adhesion molecule, was found to be highly expressed in t(9;11)(p22;q23) patients, which was confirmed by real-time quantitative polymerase chain reaction and Western blot. IGSF4 expression within t(9;11)(p22;q23) patients was 4.9 times greater in French-American-British morphology classification (FAB)-M5 versus other FAB-types (P = .001). Methylation status investigation showed that high IGSF4-expressing t(9;11)(p22;q23) patients with FAB-M5 have no promoter hypermethylation, whereas all other cases do. Cell-line incubation with demethylating agent decitabine resulted in promoter demethylation and increased expression of IGSF4. Down-regulation of IGSF4 by siRNA did not affect proliferation or drug sensitivity. In a cohort of 79 MLL-rearranged AML cases, we show significant better overall survival for cases with high IGSF4 expression (5-year overall survival 0.70 vs 0.37, P = .03) In conclusion, we identified IGSF4 overexpression to be discriminative for t(9;11)(p22;q23) patients with FAB-M5, regulated partially by promoter methylation and resulting in survival benefit.
Assuntos
Moléculas de Adesão Celular/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 9/genética , Perfilação da Expressão Gênica , Imunoglobulinas/genética , Leucemia Monocítica Aguda/genética , Translocação Genética , Adolescente , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Western Blotting , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Metilação de DNA/efeitos dos fármacos , Decitabina , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Imunoglobulinas/metabolismo , Lactente , Recém-Nascido , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de SobrevidaRESUMO
BACKGROUND: For accurate thoracic and abdominal radiotherapy, inter- and intrafractional geometrical uncertainties need to be considered to enable accurate margin sizes. We aim to quantify interfractional diaphragm and abdominal organ position variations, and intrafractional diaphragm motion in a large multicenter cohort of pediatric cancer patients (< 18 years). We investigated the correlation of interfractional position variations and intrafractional motion with age, and with general anesthesia (GA). METHODS: In 189 children (mean age 8.1; range 0.4-17.9 years) from six institutes, interfractional position variation of both hemidiaphragms, spleen, liver, left and right kidneys was quantified using a two-step registration. CBCTs were registered to the reference CT relative to the bony anatomy, followed by organ registration. We calculated the group mean, systematic and random errors (standard deviations Σ and σ, respectively) in cranial-caudal (CC), left-right and anterior-posterior directions. Intrafractional right hemidiaphragm motion was quantified using CBCTs on which the breathing amplitude, defined as the difference between end-inspiration and end-expiration peaks, was assessed (N = 79). We investigated correlations with age (Spearman's ρ), and differences in motion between patients treated with and without GA (N = 75; all < 5.5 years). RESULTS: Interfractional group means were largest in CC direction and varied widely between patients, with largest variations in the right hemidiaphragm (range -13.0-17.5 mm). Interfractional group mean of the left kidney showed a borderline significant correlation with age (p = 0.047; ρ = 0.17). Intrafractional right hemidiaphragm motion in patients ≥ 5.5 years (mean 10.3 mm) was significantly larger compared to patients < 5.5 years treated without GA (mean 8.3 mm) (p = 0.02), with smaller Σ and σ values. We found a significant correlation between breathing amplitude and age (p < 0.001; ρ = 0.43). Interfractional right hemidiaphragm position variations were significantly smaller in patients < 5.5 years treated with GA than without GA (p = 0.004), but intrafractional motion showed no significant difference. CONCLUSION: In this large multicenter cohort of children undergoing thoracic and abdominal radiotherapy, we found that interfractional position variation does not depend on age, but the use of GA in patients < 5.5 years showed smaller systematic and random errors. Furthermore, our results showed that breathing amplitude increases with age. Moreover, variations between patients advocate the need for a patient-specific margin approach.
Assuntos
Diafragma , Neoplasias , Humanos , Criança , Pré-Escolar , Movimentos dos Órgãos , Planejamento da Radioterapia Assistida por Computador/métodos , Abdome , Neoplasias/radioterapia , Movimento (Física)RESUMO
Background: Stereotactic arrhythmia radioablation (STAR) is a potential new therapy for patients with refractory ventricular tachycardia (VT). The arrhythmogenic substrate (target) is synthesized from clinical and electro-anatomical information. This study was designed to evaluate the baseline interobserver variability in target delineation for STAR. Methods: Delineation software designed for research purposes was used. The study was split into three phases. Firstly, electrophysiologists delineated a well-defined structure in three patients (spinal canal). Secondly, observers delineated the VT-target in three patients based on case descriptions. To evaluate baseline performance, a basic workflow approach was used, no advanced techniques were allowed. Thirdly, observers delineated three predefined segments from the 17-segment model. Interobserver variability was evaluated by assessing volumes, variation in distance to the median volume expressed by the root-mean-square of the standard deviation (RMS-SD) over the target volume, and the Dice-coefficient. Results: Ten electrophysiologists completed the study. For the first phase interobserver variability was low as indicated by low variation in distance to the median volume (RMS-SD range: 0.02-0.02â cm) and high Dice-coefficients (mean: 0.97 ± 0.01). In the second phase distance to the median volume was large (RMS-SD range: 0.52-1.02â cm) and the Dice-coefficients low (mean: 0.40 ± 0.15). In the third phase, similar results were observed (RMS-SD range: 0.51-1.55â cm, Dice-coefficient mean: 0.31 ± 0.21). Conclusions: Interobserver variability is high for manual delineation of the VT-target and ventricular segments. This evaluation of the baseline observer variation shows that there is a need for methods and tools to improve variability and allows for future comparison of interventions aiming to reduce observer variation, for STAR but possibly also for catheter ablation.
RESUMO
BACKGROUND AND PURPOSE: In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS: Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS: Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION: This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Taquicardia Ventricular , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Benchmarking , Coração , Vasos Coronários , Taquicardia Ventricular/radioterapia , Taquicardia Ventricular/cirurgiaRESUMO
BACKGROUND: Stereotactic arrhythmia radioablation (STAR) appears to be beneficial in selected patients with therapy-refractory ventricular tachycardia (VT). However, high-dose radiotherapy used for STAR-treatment may affect functioning of the patients' implantable cardioverter defibrillator (ICD) by direct effects of radiation on ICD components or cardiac tissue. Currently, the effect of STAR on ICD functioning remains unknown. METHODS: A retrospective pre-post multicenter study evaluating ICD functioning in the 12-month before and after STAR was performed. Patients with (non)ischemic cardiomyopathies with therapy-refractory VT and ICD who underwent STAR were included and the occurrence of ICD-related adverse events was collected. Evaluated ICD parameters included sensing, capture threshold and impedance. A linear mixed-effects model was used to investigate the association between STAR, radiotherapy dose and changes in lead parameters over time. RESULTS: In total, 43 patients (88% male) were included in this study. All patients had an ICD with an additional right atrial lead in 34 (79%) and a ventricular lead in 17 (40%) patients. Median ICD-generator dose was 0.1 Gy and lead tip dose ranged from 0-32 Gy. In one patient (2%), a reset occurred during treatment, but otherwise, STAR and radiotherapy dose were not associated with clinically relevant alterations in ICD leads parameters. CONCLUSIONS: STAR treatment did not result in major ICD malfunction. Only one radiotherapy related adverse event occurred during the study follow-up without patient harm. No clinically relevant alterations in ICD functioning were observed after STAR in any of the leads. With the reported doses STAR appears to be safe.
Assuntos
Desfibriladores Implantáveis , Isquemia Miocárdica , Taquicardia Ventricular , Humanos , Masculino , Feminino , Desfibriladores Implantáveis/efeitos adversos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/terapia , Estudos Retrospectivos , Arritmias Cardíacas/etiologia , Isquemia Miocárdica/etiologia , Resultado do TratamentoRESUMO
For radiotherapy of thoracic and abdominal tumors safety margins are applied to address geometrical uncertainties caused by e.g. set-up errors, organ motion and delineation variability. For pediatric patients no standardized margins are defined. Moreover, studies on these geometrical uncertainties are relatively scarce. Therefore, this systematic review presents an overview of organ motion, applied margin sizes and delineation variability in patients <18 years. A search from January 2000 to March 2021 in Medline, Embase, Web of Science, ClinicalTrials.gov and the International Trials Registry Platform resulted in the inclusion of 117 studies reporting on organ motion, margin sizes and/or delineation variability. Studies were heterogeneous concerning age, tumor types, the use of general anesthesia, imaging modalities; image guidance techniques were reported in 39% of the studies. Inter- and intrafractional motion as reported for different organs was largest in cranio-caudal direction and ranged from -9.1 to 10.0 mm and -4.4 to 19.5 mm, respectively. Motion quantification methodologies differed between studies regarding measures of displacement and definitions of motion direction. Reported CTV-PTV margins varied from 3 to 20 mm for both thoracic and abdominal targets, and for spinal and pelvic from 3to 15 mm and 3 to 10 mm, respectively. Studies reported wide variation in interobserver variability of target volume delineation, which may affect dose distributions to both target volumes and organs at risk. Results of this review indicate possible reduction of margin sizes for children, however, wide variation in organ motion and delineation variability caused by differences in methodologies and outcomes hamper the use of standardized margins.
Assuntos
Movimentos dos Órgãos , Radioterapia Guiada por Imagem , Criança , Fracionamento da Dose de Radiação , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodosRESUMO
Purpose: Cardiac radioablation has evolved as a potential treatment modality for therapy-refractory ventricular tachycardia. To standardize cardiac radioablation treatments, promote accurate communication and target identification, and to assess toxicity, robust, and reproducible methods for angulation and cardiac segmentation are paramount. In this study, we developed and evaluated a tool for semiautomated angulation and segmentation according to the American Heart Association 17-segment model. Methods and Materials: The semiautomated angulation and segmentation of the planning-computed tomography (CT) was based on an in-house developed tool requiring placement of only 4 point-markers and a rotation matrix. For angulation, 2 markers defining the cardiac long-axis were placed: at the cardiac apex and at the center of the mitral valve. A rotation matrix was derived that angulates the CT volume, resulting in the cardiac short axis. Segmentation was subsequently performed based on marking the 2 left ventricular hinge points. To evaluate reproducibility, 5 observers independently placed markers in planning CTs of 6 patients. Results: The root mean square of the standard deviation for the angulation and segmentation marker positions were ≤0.5 cm. The 17 segments were subsequently generated and compared between the observers resulting in a median Dice coefficient of 0.8 (interquartile range: 0.70-0.87) and a median of the mean Hausdorff distance of 0.09 cm (interquartile range: 0.05-0.17). The interquartile ranges of Euler angles α and ß, determined by the angulation markers, was less than 3 degrees for all patients except one. For the γ angle, determined by the hinge point markers, the interquartile range was up to 12 degrees. Conclusions: In this study a method for semiautomatic angulation and segmentation of the heart for cardiac radioablation according to the American Heart Association Segmented Model is presented and evaluated. Based on our results we believe that the segmentation is reproducible and that it can be used to promote communication between radiation oncology and cardiology, enables cardiology-oriented targeting and permits focused toxicity evaluations.
RESUMO
Purpose: Our purpose was to validate and compare the performance of 4 organ dose reconstruction approaches for historical radiation treatment planning based on 2-dimensional radiographs. Methods and Materials: We considered 10 patients with Wilms tumor with planning computed tomography images for whom we developed typical historic Wilms tumor radiation treatment plans, using anteroposterior and posteroanterior parallel-opposed 6 MV flank fields, normalized to 14.4 Gy. Two plans were created for each patient, with and without corner blocking. Regions of interest (lungs, heart, nipples, liver, spleen, contralateral kidney, and spinal cord) were delineated, and dose-volume metrics including organ mean and minimum dose (Dmean and Dmin) were computed as the reference baseline for comparison. Dosimetry for the 20 plans was then independently reconstructed using 4 different approaches. Three approaches involved surrogate anatomy, among which 2 used demographic-matching criteria for phantom selection/building, and 1 used machine learning. The fourth approach was also machine learning-based, but used no surrogate anatomies. Absolute differences in organ dose-volume metrics between the reconstructed and the reference values were calculated. Results: For Dmean and Dmin (average and minimum point dose) all 4 dose reconstruction approaches performed within 10% of the prescribed dose (≤1.4 Gy). The machine learning-based approaches showed a slight advantage for several of the considered regions of interest. For Dmax (maximum point dose), the absolute differences were much higher, that is, exceeding 14% (2 Gy), with the poorest agreement observed for near-beam and out-of-beam organs for all approaches. Conclusions: The studied approaches give comparable dose reconstruction results, and the choice of approach for cohort dosimetry for late effects studies should still be largely driven by the available resources (data, time, expertise, and funding).
RESUMO
PURPOSE: The frequency and patterns of HL in a HNRMS survivor cohort were investigated. A dose-effect relationship between the dose to the cochlea and HL was explored. METHODS: Dutch survivors treated for HNRMS between 1993 and 2017 with no relapse and at least two years after the end of treatment were eligible for inclusion. The survivors were evaluated for HL with pure-tone audiometry. HL was graded according to the Muenster, Common Terminology Criteria for Adverse Events (CTCAE) v4.03 and International Society for Paediatric Oncology (SIOP) classification. We defined deleterious HL as Muenster ≥ 2b, CTCAE ≥ 2, and SIOP ≥ 2. Mixed-effects logistic regression was used to search for the dose-effect relationship between the irradiation dose to the cochlea and the occurrence of HL. RESULTS: Forty-two HNRMS survivors underwent pure-tone audiometry. The Muenster, CTCAE and SIOP classification showed that 19.0% (n = 8), 14.2% (n = 6) and 11.9% (n = 5) of survivors suffered from HL, respectively. A low-frequency HL pattern with normal hearing or milder hearing loss in the higher frequencies was seen in four survivors. The maximum cochlear irradiation dose was significantly associated with HL (≥Muenster 2b) (p = 0.047). In our series, HL (≥Muenster 2b) was especially observed when the maximum dose to the cochlea exceeded 19 Gy. CONCLUSION: HL occurred in up to 19% of survivors of HNRMS. More research is needed on HL patterns in HNRMS survivors and on radiotherapy dose-effect relationships.
RESUMO
Wilms tumor 1 (WT1) mutations have recently been identified in approximately 10% of adult acute myeloid leukemia (AML) with normal cytogenetics (CN-AML) and are associated with poor outcome. Using array-based comparative genome hybridization in pediatric CN-AML samples, we detected a WT1 deletion in one sample. The other WT1 allele was mutated. This prompted us to further investigate the role of WT1 aberrations in childhood AML. Mutations were found in 35 of 298 (12%) diagnostic pediatric AML samples. In 19 of 35 (54%) samples, more than one WT1 aberration was found: 15 samples had 2 different mutations, 2 had a homozygous mutation, and 2 had a mutation plus a WT1 deletion. WT1 mutations clustered significantly in the CN-AML subgroup (22%; P < .001) and were associated with FLT3/ITD (43 vs 17%; P < .001). WT1 mutations conferred an independent poor prognostic significance (WT1 mutated vs wild-type patients: 5-year probability of overall survival [pOS] 35% vs 66%, P = .002; probability of event-free survival 22% vs 46%, P < .001; and cumulative incidence of relapse or regression 70% vs 44%, P < .001). Patients with both a WT1 mutation and a FLT3/ITD had a dismal prognosis (5-year pOS 21%). WT1 mutations occur at a significant rate in childhood AML and are a novel independent poor prognostic marker.
Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas WT1/metabolismo , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/genética , Masculino , Análise Multivariada , Mutação/genética , Prognóstico , Recidiva , Taxa de Sobrevida , Proteínas WT1/genéticaRESUMO
Translocations involving chromosome 11q23 frequently occur in pediatric acute myeloid leukemia (AML) and are associated with poor prognosis. In most cases, the MLL gene is involved, and more than 50 translocation partners have been described. Clinical outcome data of the 11q23-rearranged subgroups are scarce because most 11q23 series are too small for meaningful analysis of subgroups, although some studies suggest that patients with t(9;11)(p22;q23) have a more favorable prognosis. We retrospectively collected outcome data of 756 children with 11q23- or MLL-rearranged AML from 11 collaborative groups to identify differences in outcome based on translocation partners. All karyotypes were centrally reviewed before assigning patients to subgroups. The event-free survival of 11q23/MLL-rearranged pediatric AML at 5 years from diagnosis was 44% (+/- 5%), with large differences across subgroups (11% +/- 5% to 92% +/- 5%). Multivariate analysis identified the following subgroups as independent prognostic predictors: t(1;11)(q21;q23) (hazard ratio [HR] = 0.1, P = .004); t(6;11)(q27;q23) (HR = 2.2, P < .001); t(10;11)(p12;q23) (HR = 1.5, P = .005); and t(10;11)(p11.2;q23) (HR = 2.5, P = .005). We could not confirm the favorable prognosis of the t(9;11)(p22;q23) subgroup. We identified large differences in outcome within 11q23/MLL-rearranged pediatric AML and novel subgroups based on translocation partners that independently predict clinical outcome. Screening for these translocation partners is needed for accurate treatment stratification at diagnosis.
Assuntos
Cromossomos Humanos Par 11/genética , Rearranjo Gênico , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Translocação Genética , Criança , Mapeamento Cromossômico , Cromossomos Humanos Par 9/genética , Intervalo Livre de Doença , Histona-Lisina N-Metiltransferase , Humanos , Hibridização in Situ Fluorescente , Agências Internacionais , Cariotipagem , Prognóstico , Estudos RetrospectivosRESUMO
BACKGROUND: Dysfunctioning of CCAAT/enhancer binding protein α (C/EBPα) in acute myeloid leukemia can be caused, amongst others, by mutations in the encoding gene (CEBPA) and by promoter hypermethylation. CEBPA-mutated acute myeloid leukemia is associated with a favorable outcome, but this may be restricted to the case of double mutations in CEBPA in adult acute myeloid leukemia. In pediatric acute myeloid leukemia, data on the impact of these mutations are limited to one series, and data on promoter hypermethylation are lacking. Our objective was to investigate the characteristics, gene expression profiles and prognostic impact of the different CEBPA aberrations in pediatric acute myeloid leukemia. DESIGN AND METHODS: We screened a large pediatric cohort (n=252) for CEBPA single and double mutations by direct sequencing, and for promoter hypermethylation by methylation-specific polymerase chain reaction. Furthermore, we determined the gene-expression profiles (Affymetrix HGU133 plus 2.0 arrays) of this cohort (n=237). RESULTS: Thirty-four mutations were identified in 20 out of the 252 cases (7.9%), including 14 double-mutant and 6 single-mutant cases. CEBPA double mutations conferred a significantly better 5-year overall survival compared with single mutations (79% versus 25%, respectively; P=0.04), and compared with CEBPA wild-type acute myeloid leukemia excluding core-binding factor cases (47%; P=0.07). Multivariate analysis confirmed that the double mutations were an independent favorable prognostic factor for survival (hazard ratio 0.23, P=0.04). The combination of screening for promoter hypermethylation and gene expression profiling identified five patients with silenced CEBPA, of whom four cases relapsed. All cases characteristically expressed T-lymphoid markers. Moreover, unsupervised clustering of gene expression profiles showed a clustering of CEBPA double-mutant and silenced cases, pointing towards a common hallmark of abrogated C/EBPα-functioning in these acute myeloid leukemias. CONCLUSIONS: We showed the independent favorable outcome of patients with CEBPA double-mutant acute myeloid leukemia in a large pediatric series. This molecular marker may, therefore, improve risk-group stratification in pediatric acute myeloid leukemia. For the first time, CEBPA-silenced cases are suggested to confer a poor outcome in pediatric acute myeloid leukemia, indicating that further investigation of this aberration is needed. Furthermore, clustering of gene expression profiles provided insight into the biological similarities and diversities of the different aberrations in CEBPA in pediatric acute myeloid leukemia.
Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Leucemia Mieloide Aguda/genética , Mutação , Proteínas de Neoplasias/genética , Adolescente , Adulto , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Criança , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Estudos de Associação Genética , Marcadores Genéticos , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Masculino , Proteínas de Neoplasias/metabolismo , Reação em Cadeia da Polimerase , Prognóstico , Regiões Promotoras Genéticas , Medição de Risco , Taxa de SobrevidaRESUMO
BACKGROUND: Several studies of pediatric acute myeloid leukemia have described the various type-I or type-II aberrations and their relationship with clinical outcome. However, there has been no recent comprehensive overview of these genetic aberrations in one large pediatric acute myeloid leukemia cohort. DESIGN AND METHODS: We studied the different genetic aberrations, their associations and their impact on prognosis in a large pediatric acute myeloid leukemia series (n=506). Karyotypes were studied, and hotspot regions of NPM1, CEPBA, MLL, WT1, FLT3, N-RAS, K-RAS, PTPN11 and KIT were screened for mutations of available samples. The mutational status of all type-I and type-II aberrations was available in 330 and 263 cases, respectively. Survival analysis was performed in a subset (n=385) treated on consecutive acute myeloid leukemia Berlin-Frankfurt-Munster Study Group and Dutch Childhood Oncology Group treatment protocols. RESULTS: Genetic aberrations were associated with specific clinical characteristics, e.g. significantly higher diagnostic white blood cell counts in MLL-rearranged, WT1-mutated and FLT3-ITD-positive acute myeloid leukemia. Furthermore, there was a significant difference in the distribution of these aberrations between children below and above the age of two years. Non-random associations, e.g. KIT mutations with core-binding factor acute myeloid leukemia, and FLT3-ITD with t(15;17)(q22;q21), NPM1- and WT1-mutated acute myeloid leukemia, respectively, were observed. Multivariate analysis revealed a 'favorable karyotype', i.e. t(15;17)(q22;q21), t(8;21)(q22;q22) and inv(16)(p13q22)/t(16;16)(p13;q22). NPM1 and CEBPA double mutations were independent factors for favorable event-free survival. WT1 mutations combined with FLT3-ITD showed the worst outcome for 5-year overall survival (22±14%) and 5-year event-free survival (20±13%), although it was not an independent factor in multivariate analysis. CONCLUSIONS: Integrative analysis of type-I and type-II aberrations provides an insight into the frequencies, non-random associations and prognostic impact of the various aberrations, reflecting the heterogeneity of pediatric acute myeloid leukemia. These aberrations are likely to guide the stratification of pediatric acute myeloid leukemia and may direct the development of targeted therapies.
Assuntos
Aberrações Cromossômicas , Heterogeneidade Genética , Leucemia Mieloide Aguda/genética , Adolescente , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Cariótipo , Leucemia Mieloide Aguda/mortalidade , Masculino , Mutação , Nucleofosmina , Prognóstico , Fatores Sexuais , Análise de SobrevidaRESUMO
BACKGROUND: Pediatric acute myeloid leukemia is a heterogeneous disease characterized by non-random genetic aberrations related to outcome. The genetic subtype is currently detected by different diagnostic procedures which differ in success rate and/or specificity. DESIGN AND METHODS: We examined the potential of gene expression profiles to classify pediatric acute myeloid leukemia. Gene expression microarray data of 237 children with acute myeloid leukemia were collected and a double-loop cross validation approach was used to generate a subtype-predictive gene expression profile in the discovery cohort (n=157) which was then tested for its true predictive value in the independent validation cohort (n=80). The classifier consisted of 75 probe sets, representing the top 15 discriminating probe sets for MLL-rearranged, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17)(q21;q22) and t(7;12)(q36;p13)-positive acute myeloid leukemia. RESULTS: These cytogenetic subtypes represent approximately 40% of cases of pediatric acute myeloid leukemia and were predicted with 92% and 99% accuracy in the discovery and independent validation cohort, respectively. However, for NPM1, CEBPA, MLL(-PTD), FLT3(-ITD), KIT, PTPN11 and N/K-RAS gene expression signatures had limited predictive value. This may be caused by a limited frequency of these mutations and by underlying cytogenetics. This latter is exemplified by the fact that different gene expression signatures were discovered for FLT3-ITD in patients with normal cytogenetics and in those with t(15;17)(q21;q22)-positive acute myeloid leukemia, which pointed to HOXB-upregulation being specific for FLT3-ITD(+) cytogenetically normal acute myeloid leukemia. CONCLUSIONS: In conclusion, gene expression profiling correctly predicted the most prevalent cytogenetic subtypes of pediatric acute myeloid leukemia with high accuracy. In clinical practice, this gene expression signature may replace multiple diagnostic tests for approximately 40% of pediatric acute myeloid leukemia cases whereas only for the remaining cases (predicted as 'acute myeloid leukemia-other') are additional tests indicated. Moreover, the discriminative genes reveal new insights into the biology of acute myeloid leukemia subtypes that warrants follow-up as potential targets for new therapies.