Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Brain ; 147(4): 1377-1388, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787503

RESUMO

Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.


Assuntos
Melaninas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tremor/complicações , Radioisótopos de Carbono/metabolismo , Tomografia por Emissão de Pósitrons , Norepinefrina/metabolismo , Locus Cerúleo/metabolismo , Imageamento por Ressonância Magnética
2.
Neuroimage ; 240: 118328, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224852

RESUMO

Previous work introduced the [11C]yohimbine as a suitable ligand of central α2-adrenoreceptors (α2-ARs) for PET imaging. However, reproducibility of [11C]yohimbine PET measurements in healthy humans estimated with a simplified modeling method with reference region, as well as sensitivity of [11C]yohimbine to noradrenergic competition were not evaluated. The objectives of the present study were therefore to fill this gap. METHODS: Thirteen healthy humans underwent two [11C]yohimbine 90-minute dynamic scans performed on a PET-MRI scanner. Seven had arterial blood sampling with metabolite assessment and plasmatic yohimbine free fraction evaluation at the first scan to have arterial input function and test appropriate kinetic modeling. The second scan was a simple retest for 6 subjects to evaluate the test-retest reproducibility. For the remaining 7 subjects the second scan was a challenge study with the administration of a single oral dose of 150 µg of clonidine 90 min before the PET scan. Parametric images of α2-ARs distribution volume ratios (DVR) were generated with two non-invasive models: Logan graphical analysis with Reference (LREF) and Simplified Reference Tissue Method (SRTM). Three reference regions (cerebellum white matter (CERWM), frontal white matter (FLWM), and corpus callosum (CC)) were tested. RESULTS: We showed high test-retest reproducibility of DVR estimation with LREF and SRTM regardless of reference region (CC, CERWM, FLWM). The best fit was obtained with SRTMCC (r2=0.94). Test-retest showed that the SRTMCC is highly reproducible (mean ICC>0.7), with a slight bias (-1.8%), whereas SRTMCERWM had lower bias (-0.1%), and excellent ICC (mean>0.8). Using SRTMCC, regional changes have been observed after clonidine administration with a significant increase reported in the amygdala and striatum as well as in several posterior cortical areas as revealed with the voxel-based analysis. CONCLUSION: The results add experimental support for the suitability of [11C]yohimbine PET in the quantitative assessment of α2-ARs occupancy in vivo in the human brain. Trial registration EudraCT 2018-000380-82.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/normas , Ioimbina/metabolismo , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Tomografia por Emissão de Pósitrons/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Adulto Jovem
3.
Brain ; 143(12): 3734-3747, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320929

RESUMO

Impulse control disorders (ICDs) in Parkinson's disease have been associated with dysfunctions in the control of value- or reward-based responding (choice impulsivity) and abnormalities in mesocorticolimbic circuits. The hypothesis that dysfunctions in the control of response inhibition (action impulsivity) also play a role in Parkinson's disease ICDs has recently been raised, but the underlying neural mechanisms have not been probed directly. We used high-resolution EEG recordings from 41 patients with Parkinson's disease with and without ICDs to track the spectral and dynamical signatures of different mechanisms involved in inhibitory control in a simple visuomotor task involving no selection between competing responses and no reward to avoid potential confounds with reward-based decision. Behaviourally, patients with Parkinson's disease with ICDs proved to be more impulsive than those without ICDs. This was associated with decreased beta activity in the precuneus and in a region of the medial frontal cortex centred on the supplementary motor area. The underlying dynamical patterns pinpointed dysfunction of proactive inhibitory control, an executive mechanism intended to gate motor responses in anticipation of stimulation in uncertain contexts. The alteration of the cortical drive of proactive response inhibition in Parkinson's disease ICDs pinpoints the neglected role the precuneus might play in higher order executive functions in coordination with the supplementary motor area, specifically for switching between executive settings. Clinical perspectives are discussed in the light of the non-dopaminergic basis of this function.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/psicologia , Inibição Psicológica , Transtornos Parkinsonianos/psicologia , Idoso , Ritmo beta , Mapeamento Encefálico , Comportamento de Escolha , Transtornos Disruptivos, de Controle do Impulso e da Conduta/etiologia , Eletroencefalografia , Função Executiva , Feminino , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Lobo Parietal/fisiopatologia , Transtornos Parkinsonianos/complicações , Desempenho Psicomotor
4.
J Neurochem ; 146(3): 333-347, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29675956

RESUMO

Clonidine is an anti-hypertensive medication which acts as an alpha-adrenergic receptor agonist. As the noradrenergic system is likely to support cognitive functions including attention and executive control, other clinical uses of clonidine have recently gained popularity for the treatment of neuropsychiatric disorders like attention-deficit hyperactivity disorder or Tourette syndrome, but the mechanism of action is still unclear. Here, we test the hypothesis that the noradrenergic system regulates the activity of subthalamo-motor cortical loops, and that this influence can be modulated by clonidine. We used pharmacological manipulation of clonidine in a placebo-controlled study in combination with subthalamic nucleus-deep brain stimulation (STN-DBS) in 16 Parkinson's disease patients performing a reaction time task requiring to refrain from reacting (proactive inhibition). We recorded electroencephalographical activity of the whole cortex, and applied spectral analyses directly at the source level after advanced blind source separation. We found only one cortical source localized to the supplementary motor area (SMA) that supported an interaction of pharmacological and subthalamic stimulation. Under placebo, STN-DBS reduced proactive alpha power in the SMA, a marker of local inhibitory activity. This effect was associated with the speeding-up of movement initiation. Clonidine substantially increased proactive alpha power from the SMA source, and canceled out the benefits of STN-DBS on movement initiation. These results provide the first direct neural evidence in humans that the tonic inhibitory activity of the subthalamocortical loops underlying the control of movement initiation is coupled to the noradrenergic system, and that this activity can be targeted by pharmacological agents acting on alpha-adrenergic receptors.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Ondas Encefálicas/efeitos dos fármacos , Clonidina/uso terapêutico , Estimulação Encefálica Profunda/métodos , Córtex Motor/efeitos dos fármacos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Ondas Encefálicas/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Doença de Parkinson/fisiopatologia , Estimulação Luminosa , Tempo de Reação , Núcleo Subtalâmico/efeitos dos fármacos , Resultado do Tratamento
5.
J Neurosci ; 36(5): 1577-89, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843639

RESUMO

It is now widely accepted that compensatory mechanisms are involved during the early phase of Parkinson's disease (PD) to delay the expression of motor symptoms. However, the neurochemical mechanisms underlying this presymptomatic period are still unclear. Here, we measured in vivo longitudinal changes of both the dopaminergic and serotonergic systems in seven asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated monkeys (when motor symptoms are less apparent) using PET. We used the progressively MPTP-intoxicated monkey model that expresses recovery from motor symptoms to study the changes in dopamine synthesis ([(18)F]DOPA), dopamine D2/D3 receptors ([(11)C]raclopride), and serotonin transporter (11)C-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio) benzylamine ([(11)C]DASB) and serotonin 1A receptor ([(18)F]MPPF) levels between four different states (baseline, early symptomatic, full symptomatic and recovered). During the early symptomatic state, we observed increases of [(18)F]DOPA uptake in the anterior putamen, [(11)C]raclopride binding in the posterior striatum, and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine [(18)F]MPPF uptake in the orbitofrontal cortex and dorsal ACC. After recovery from motor symptoms, the results mainly showed decreased [(11)C]raclopride binding in the anterior striatum and limbic ACC. In addition, our findings supported the importance of pallidal dopaminergic neurotransmission in both the early compensatory mechanisms and the functional recovery mechanisms, with reduced aromatic L-amino acid decarboxylase (AAAD) activity closely related to the appearance or perseveration of motor symptoms. In parallel, this study provides preliminary evidence of the role of the serotonergic system in compensatory mechanisms. Nonetheless, future studies are needed to determine whether there are changes in SERT availability in the early symptomatic state and if [(18)F]MPPF PET imaging might be a promising biomarker of early degenerative changes in PD. SIGNIFICANCE STATEMENT: The present research provides evidence of the potential of combining a multitracer PET imaging technique and a longitudinal protocol applied on a progressively 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated monkey model to further elucidate the nature of the compensatory mechanisms involved in the preclinical period of Parkinson's disease (PD). In particular, by investigating the dopaminergic and serotonergic changes both presynaptically and postsynaptically at four different motor states (baseline, early symptomatic, full symptomatic, and recovered), this study has allowed us to identify putative biomarkers for future therapeutic interventions to prevent and/or delay disease expression. For example, our findings suggest that the external pallidum could be a new target for cell-based therapies to reduce PD symptoms.


Assuntos
Neurônios Dopaminérgicos/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/tendências , Neurônios Serotoninérgicos/diagnóstico por imagem , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estudos Longitudinais , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia
6.
Mov Disord ; 32(2): 181-192, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150432

RESUMO

Molecular imaging has proven to be a powerful tool for investigation of parkinsonian disorders. One current challenge is to identify biomarkers of early changes that may predict the clinical trajectory of parkinsonian disorders. Exciting new tracer developments hold the potential for in vivo markers of underlying pathology. Herein, we provide an overview of molecular imaging advances and how these approaches help us to understand PD and atypical parkinsonisms. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Imagem Molecular/métodos , Doença de Parkinson/diagnóstico , Transtornos Parkinsonianos/diagnóstico , Humanos , Imagem Molecular/tendências
7.
Hum Brain Mapp ; 37(4): 1375-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26800238

RESUMO

The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson's disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect.


Assuntos
Córtex Cerebral/fisiopatologia , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
8.
Brain ; 138(Pt 9): 2632-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117365

RESUMO

Serotonergic (5-HT) neurons degenerate in Parkinson's disease. To determine the role of this 5-HT injury-besides the dopaminergic one in the parkinsonian symptomatology-we developed a new monkey model exhibiting a double dopaminergic/serotonergic lesion by sequentially using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 3,4-methylenedioxy-N-methamphetamine (MDMA, better known as ecstasy). By positron emission tomography imaging and immunohistochemistry, we demonstrated that MDMA injured 5-HT nerve terminals in the brain of MPTP monkeys. Unexpectedly, this injury had no impact on tremor or on bradykinesia, but altered rigidity. It abolished the l-DOPA-induced dyskinesia and neuropsychiatric-like behaviours, without altering the anti-parkinsonian response. These data demonstrate that 5-HT fibres play a critical role in the expression of both motor and non-motor symptoms in Parkinson's disease, and highlight that an imbalance between the 5-HT and dopaminergic innervating systems is involved in specific basal ganglia territories for different symptoms.


Assuntos
Dopamina/metabolismo , Intoxicação por MPTP/fisiopatologia , Transtornos Mentais/etiologia , Serotonina/metabolismo , Compostos de Anilina , Animais , Antiparkinsonianos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Chlorocebus aethiops , Modelos Animais de Doenças , Dopaminérgicos/toxicidade , Feminino , Levodopa/uso terapêutico , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/tratamento farmacológico , Macaca fascicularis , Masculino , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Nortropanos , Cintilografia , Serotoninérgicos/toxicidade , Sulfetos
9.
Neuroimage ; 77: 26-43, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23537938

RESUMO

UNLABELLED: MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures. METHODS: Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data. RESULTS: Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of atlases used. When all four atlases were used for the MAXPROB creation, the accuracy of morphometric segmentation approached that of the PROPAG method. PET measures extracted either via automatic methods or via the manually defined regions were strongly correlated, with no significant regional differences between methods. Intra-class correlation coefficients for test-retest data were over 0.87. CONCLUSIONS: Compared to single atlas extractions, multi-atlas methods improve the accuracy of region definition. They also perform comparably to manually defined regions for PET quantification. Multiple atlases of Macaca fascicularis brains are now available and allow reproducible and simplified analyses.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Animais , Encéfalo/fisiologia , Feminino , Cinética , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
10.
Biomolecules ; 13(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238713

RESUMO

The neurofunctional basis of the noradrenergic (NA) system and its associated disorders is still very incomplete because in vivo imaging tools in humans have been missing up to now. Here, for the first time, we use [11C]yohimbine in a large sample of subjects (46 healthy volunteers, 23 females, 23 males; aged 20-50) to perform direct quantification of regional alpha 2 adrenergic receptors' (α2-ARs) availability in the living human brain. The global map shows the highest [11C]yohimbine binding in the hippocampus, the occipital lobe, the cingulate gyrus, and the frontal lobe. Moderate binding was found in the parietal lobe, thalamus, parahippocampus, insula, and temporal lobe. Low levels of binding were found in the basal ganglia, the amygdala, the cerebellum, and the raphe nucleus. Parcellation of the brain into anatomical subregions revealed important variations in [11C]yohimbine binding within most structures. Strong heterogeneity was found in the occipital lobe, the frontal lobe, and the basal ganglia, with substantial gender effects. Mapping the distribution of α2-ARs in the living human brain may prove useful not only for understanding the role of the NA system in many brain functions, but also for understanding neurodegenerative diseases in which altered NA transmission with specific loss of α2-ARs is suspected.


Assuntos
Encéfalo , Receptores Adrenérgicos alfa 2 , Masculino , Feminino , Humanos , Ioimbina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Norepinefrina/metabolismo , Tomografia por Emissão de Pósitrons/métodos
11.
J Neurol ; 270(10): 4851-4859, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37338615

RESUMO

BACKGROUND: Impulse control disorders (ICDs) are frequently encountered in Parkinson's disease (PD). OBJECTIVES: We aimed to assess whether clonidine, an α2-adrenergic receptor agonist, would improve ICDs. METHODS: We conducted a multicentre trial in five movement disorder departments. Patients with PD and ICDs (n = 41) were enrolled in an 8-week, randomised (1:1), double-blind, placebo-controlled study of clonidine (75 µg twice a day). Randomisation and allocation to the trial group were carried out by a central computer system. The primary outcome was the change at 8 weeks in symptom severity using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) score. A reduction of the most elevated subscore of the QUIP-RS of more than 3 points without any increase in the other QUIP-RS dimension defined success. RESULTS: Between 15 May 2019 and 10 September 2021, 19 patients in the clonidine group and 20 patients in the placebo group were enrolled. The proportion difference of success in reducing QUIP-RS at 8 weeks, was 7% (one-sided upper 90% CI 27%) with 42.1% of success in the clonidine group and 35.0% in the placebo group. Compared to patients in the placebo group, patients in the clonidine group experienced a greater reduction in the total QUIP-RS score at 8 weeks (11.0 points vs. 3.6). DISCUSSION: Clonidine was well tolerated but our study was not enough powerful to demonstrate significant superiority compared to placebo in reducing ICDs despite a greater reduction of total QUIP score at 8 weeks. A phase 3 study should be conducted. TRIAL REGISTRATION: The study was registered (NCT03552068) on clinicaltrials.gov on June 11, 2018.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/diagnóstico , Clonidina/efeitos adversos , Transtornos Disruptivos, de Controle do Impulso e da Conduta/tratamento farmacológico , Transtornos Disruptivos, de Controle do Impulso e da Conduta/etiologia , Comportamento Impulsivo , Método Duplo-Cego , Resultado do Tratamento
12.
Neurobiol Dis ; 48(1): 27-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22728661

RESUMO

The cardinal symptoms of Parkinson's disease (PD), akinesia, rigidity and tremor, are only observed when the striatal level of dopamine (DA) is decreased by 60-80%. It is likely that compensatory mechanisms during the early phase of DA depletion delay the appearance of motor symptoms. In a previous study, we proposed a new PD monkey model with progressive MPTP intoxication. Monkeys developed all of the motor symptoms and then fully recovered despite a large DA cell loss in the substantia nigra (SN). Compensatory mechanisms certainly help to offset the dysfunction induced by the DA lesion, facilitating motor recovery in this model. Neurotransmitter measurements in the striatal sensorimotor and associative/limbic territories of these monkeys subsequently revealed that DA and serotonin (5-HT) could play a role in recovery mechanisms. To try to determine the involvement of these neurotransmitters in compensatory mechanisms, we performed local injections of DA and 5-HT antagonists (cis-flupenthixol and mianserin, respectively) into these two striatal territories and into the external segment of the globus pallidus (GPe). Injections were performed on monkeys that were in an asymptomatic state after motor recovery. Most parkinsonian motor symptoms reappeared in animals with DA antagonist injections either in sensorimotor, associative/limbic striatal territories or in the GPe. In contrast to the effects with DA antagonist, there were mild parkinsonian effects with 5-HT antagonist, especially after injections in sensorimotor territories of the striatum and the GPe. These results support a possible, but slight, involvement of 5-HT in compensatory mechanisms and highlight the possible participation of 5-HT in some behavioural disorders. Furthermore, these results support the notion that the residual DA in the different striatal territories and the GPe could be involved in important mechanisms of compensation in PD.


Assuntos
Corpo Estriado/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Flupentixol/farmacologia , Mianserina/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Antagonistas da Serotonina/farmacologia , Animais , Chlorocebus aethiops , Corpo Estriado/fisiopatologia , Macaca fascicularis , Masculino , Microinjeções
13.
Mov Disord ; 27(1): 84-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21994070

RESUMO

Depression is frequent in Parkinson's disease, but its pathophysiology remains unclear. Two recent studies have investigated the role of serotonergic system at the presynaptic level. The objective of the present study was to use positron emission tomography and [(18)F]MPPF to investigate the role of postsynaptic serotonergic system dysfunction in the pathophysiology of depression in Parkinson's disease. Four parkinsonian patients with depression and 8 parkinsonian patients without depression were enrolled. Each patient underwent a scan using [(18)F]MPPF, a selective serotonin 1A receptor antagonist. Voxel-by-voxel statistical comparison of [(18)F]MPPF uptake of the 2 groups of parkinsonian patients and with 7 matched normal subjects was made using statistical parametric mapping (P uncorrected < .001). Compared with nondepressed parkinsonian patients, depressed patients exhibited reduced tracer uptake in the left hippocampus, the right insula, the left superior temporal cortex, and the orbitofrontal cortex. Compared with controls, nondepressed parkinsonian patients presented reduced [(18)F]MPPF uptake bilaterally in the inferior frontal cortex as well as in the right ventral striatum and insula. Compared with controls, [(18)F]MPPF uptake was decreased in depressed parkinsonian patients in the left dorsal anterior cingulate and orbitofrontal cortices, in the right hippocampic region, and in the temporal cortex. The present imaging study suggests that abnormalities in serotonin 1A receptor neurotransmission in the limbic system may be involved in the neural mechanisms underlying depression in patients with Parkinson's disease.


Assuntos
Depressão/diagnóstico por imagem , Depressão/etiologia , Doença de Parkinson/complicações , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Idoso , Aminopiridinas/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Feminino , Radioisótopos de Flúor , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons , Antagonistas da Serotonina/farmacocinética
14.
Cells ; 11(17)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36078048

RESUMO

Slowness of movement initiation is a cardinal motor feature of Parkinson's disease (PD) and is not fully reverted by current dopaminergic treatments. This trouble could be due to the dysfunction of executive processes and, in particular, of inhibitory control of response initiation, a function possibly associated with the noradrenergic (NA) system. The implication of NA in the network supporting proactive inhibition remains to be elucidated using pharmacological protocols. For that purpose, we administered 150 µg of clonidine to 15 healthy subjects and 12 parkinsonian patients in a double-blind, randomized, placebo-controlled design. Proactive inhibition was assessed by means of a Go/noGo task, while pre-stimulus brain activity was measured by event-related functional MRI. Acute reduction in noradrenergic transmission induced by clonidine enhanced difficulties initiating movements reflected by an increase in omission errors and modulated the activity of the anterior node of the proactive inhibitory network (dorsomedial prefrontal and anterior cingulate cortices) in PD patients. We conclude that NA contributes to movement initiation by acting on proactive inhibitory control via the α2-adrenoceptor. We suggest that targeting noradrenergic dysfunction may represent a new treatment approach in some of the movement initiation disorders seen in Parkinson's disease.


Assuntos
Doença de Parkinson , Clonidina/farmacologia , Clonidina/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Movimento/fisiologia , Norepinefrina , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico
15.
J Neurol Neurosurg Psychiatry ; 82(6): 607-14, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21047882

RESUMO

Hypomanic symptoms depending on anatomical location of contacts are reported in patients with Parkinson's disease (PD) treated by deep brain stimulation (DBS) of the subthalamic nucleus (STN). However, the underlying cortical and subcortical dysfunction is debated. In this study, five PD patients implanted with DBS-STN who presented with reversible and reproducible hypomanic symptoms after stimulation of specific 'manic' contacts were investigated. Hypomanic symptoms were assessed using the Bech and Rafaelsen Mania Scale (MAS). Three dimensional anatomical location of 'euthymic' and 'manic' contacts, after matching the postoperative CT scan with the preoperative stereotactic MRI, and a H(2)(15)O positron emission tomography (PET) study testing 'euthymic' and 'manic' contacts, were performed. Under 'euthymic' conditions, MAS score (mean±SD) was 0.6±0.5 compared with 7.8±3.1 under 'manic' conditions. Nine of 10 'manic' contacts were located in the substantia nigra, mainly in its ventral part. PET showed that hypomania was associated with strong asymmetrical cerebral activation involving preferentially the right hemisphere and was mediated by activation of the anterior cingulate and medial prefrontal cortex. The present study demonstrates the role of the subcortical structures in the genesis of hypomania in PD patients treated with DBS and stresses the involvement of the substantia nigra.


Assuntos
Transtorno Bipolar/etiologia , Transtorno Bipolar/fisiopatologia , Estimulação Encefálica Profunda/efeitos adversos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Atenção/fisiologia , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Neuroestimuladores Implantáveis , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Desempenho Psicomotor/fisiologia , Substância Negra/diagnóstico por imagem , Substância Negra/fisiopatologia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Tomografia Computadorizada por Raios X/métodos
16.
Brain Sci ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925153

RESUMO

The basal ganglia (BG) have long been known for contributing to the regulation of motor behaviour by means of a complex interplay between tonic and phasic inhibitory mechanisms. However, after having focused for a long time on phasic reactive mechanisms, it is only recently that psychological research in healthy humans has modelled tonic proactive mechanisms of control. Mutual calibration between anatomo-functional and psychological models is still needed to better understand the unclear role of the BG in the interplay between proactive and reactive mechanisms of control. Here, we implemented an event-related fMRI design allowing proper analysis of both the brain activity preceding the target-stimulus and the brain activity induced by the target-stimulus during a simple go/nogo task, with a particular interest in the ambiguous role of the basal ganglia. Post-stimulus activity was evoked in the left dorsal striatum, the subthalamus nucleus and internal globus pallidus by any stimulus when the situation was unpredictable, pinpointing its involvement in reactive, non-selective inhibitory mechanisms when action restraint is required. Pre-stimulus activity was detected in the ventral, not the dorsal, striatum, when the situation was unpredictable, and was associated with changes in functional connectivity with the early visual, not the motor, cortex. This suggests that the ventral striatum supports modulatory influence over sensory processing during proactive control.

17.
Ann Neurol ; 66(6): 817-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20035509

RESUMO

OBJECTIVE: In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a "hold your horses" signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. METHODS: We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. RESULTS: Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. INTERPRETATION: The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation.


Assuntos
Comportamento de Escolha/fisiologia , Estimulação Encefálica Profunda/métodos , Comportamento Impulsivo/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Comportamento Impulsivo/diagnóstico por imagem , Comportamento Impulsivo/etiologia , Inibição Psicológica , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tomografia por Emissão de Pósitrons/métodos , Tempo de Reação/fisiologia , Índice de Gravidade de Doença , Estatística como Assunto
18.
Neuroimage ; 46(2): 516-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19264140

RESUMO

There is clear evidence that the prefrontal cortex is strongly involved in executive processes and that dopamine can influence performance on working memory tasks. Although, some studies have emphasized the role of striatal dopamine in executive functions, the role played by prefrontal dopamine during executive tasks is unknown. In order to investigate cortical dopamine transmission during executive function, we used D(2)-dopamine receptor ligand [(11)C]FLB 457 PET in healthy subjects while performing the Montreal Card Sorting Task (MCST). During the retrieval with shift task of the MCST, the subjects had to match each test card to one of the reference cards based on a classification rule (color, shape or number) determined by comparing the previously viewed cue card and the current test card. A reduction in [(11)C]FLB 457 binding potential in the right dorsal anterior cingulate cortex (ACC) was observed when subjects performed the active task compared to the control task. These findings may suggest that right dorsal ACC dopamine neurotransmission increases significantly during the performance of certain executive processes, e.g., conflict monitoring, in keeping with previous evidence from fMRI studies showing ACC activation during similar tasks. These results may provide some insights on the origin of cognitive deficits underlying certain neurological disorders associated with dopamine dysfunction, such as Parkinson's disease and schizophrenia.


Assuntos
Tomada de Decisões/fisiologia , Dopamina/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Resolução de Problemas/fisiologia , Pirrolidinas/farmacocinética , Salicilamidas/farmacocinética , Análise e Desempenho de Tarefas , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Compostos Radiofarmacêuticos/farmacocinética
19.
J Neurophysiol ; 102(5): 2578-80, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19710373

RESUMO

Lo and colleagues have recently described a recurrent network model of inhibitory control of saccadic eye movements based on neurophysiological observations in the frontal eye field (FEF) and superior colliculus (SC) of rhesus monkeys. This model emphasizes the proactive, inhibition-based, tonic neuronal activity that prevents the eye from moving in a countermanding paradigm. In this review I discuss the model with respect to existing literature that the authors did not mention, suggesting that proactive inhibitory control extends far beyond saccadic control and provides an interesting framework to interpret several attentional and movement disorders in humans.


Assuntos
Modelos Neurológicos , Inibição Neural/fisiologia , Movimentos Sacádicos/fisiologia , Campos Visuais/fisiologia , Animais , Rede Nervosa/fisiologia , Neurônios/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia
20.
Hum Brain Mapp ; 30(12): 3901-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19479730

RESUMO

Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements.


Assuntos
Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/irrigação sanguínea , Idoso , Eletrodos Implantados , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Destreza Motora/fisiologia , Radioisótopos de Oxigênio , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem , Núcleo Tegmental Pedunculopontino/fisiopatologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA