Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7890): 670-674, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937895

RESUMO

Carbon capture and storage (CCS) is a key technology to mitigate the environmental impact of carbon dioxide (CO2) emissions. An understanding of the potential trapping and storage mechanisms is required to provide confidence in safe and secure CO2 geological sequestration1,2. Depleted hydrocarbon reservoirs have substantial CO2 storage potential1,3, and numerous hydrocarbon reservoirs have undergone CO2 injection as a means of enhanced oil recovery (CO2-EOR), providing an opportunity to evaluate the (bio)geochemical behaviour of injected carbon. Here we present noble gas, stable isotope, clumped isotope and gene-sequencing analyses from a CO2-EOR project in the Olla Field (Louisiana, USA). We show that microbial methanogenesis converted as much as 13-19% of the injected CO2 to methane (CH4) and up to an additional 74% of CO2 was dissolved in the groundwater. We calculate an in situ microbial methanogenesis rate from within a natural system of 73-109 millimoles of CH4 per cubic metre (standard temperature and pressure) per year for the Olla Field. Similar geochemical trends in both injected and natural CO2 fields suggest that microbial methanogenesis may be an important subsurface sink of CO2 globally. For CO2 sequestration sites within the environmental window for microbial methanogenesis, conversion to CH4 should be considered in site selection.


Assuntos
Dióxido de Carbono , Água Subterrânea , Metano , Bactérias/metabolismo , Dióxido de Carbono/análise , Geologia , Metano/metabolismo , Temperatura
2.
Nature ; 580(7803): 367-371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296193

RESUMO

Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15N15N isotopologue of N2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ15N (the fractional difference in 15N/14N from air), N2/36Ar and N2/3He. Our results show that negative δ15N values observed in gases, previously regarded as indicating a mantle origin for nitrogen7-10, in fact represent dominantly air-derived N2 that experienced 15N/14N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15N15N data allow extrapolations that characterize mantle endmember δ15N, N2/36Ar and N2/3He values. We show that the Eifel region has slightly increased δ15N and N2/36Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts11, consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ15N values substantially greater than that of the convective mantle, resembling surface components12-15, its N2/36Ar and N2/3He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high mid-ocean-ridge basalt and plume δ15N values may both be dominantly primordial features.

4.
Nature ; 571(7765): E7, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31263274

RESUMO

Change history: In this Article, the original affiliation 2 was not applicable and has been removed. In addition, in the Acknowledgements there was a statement missing and an error in a name. These errors have been corrected online.

5.
Nature ; 568(7753): 487-492, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31019327

RESUMO

Carbon and other volatiles in the form of gases, fluids or mineral phases are transported from Earth's surface into the mantle at convergent margins, where the oceanic crust subducts beneath the continental crust. The efficiency of this transfer has profound implications for the nature and scale of geochemical heterogeneities in Earth's deep mantle and shallow crustal reservoirs, as well as Earth's oxidation state. However, the proportions of volatiles released from the forearc and backarc are not well constrained compared to fluxes from the volcanic arc front. Here we use helium and carbon isotope data from deeply sourced springs along two cross-arc transects to show that about 91 per cent of carbon released from the slab and mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition. Around an additional three per cent is incorporated into the biomass through microbial chemolithoautotrophy, whereby microbes assimilate inorganic carbon into biomass. We estimate that between 1.2 × 108 and 1.3 × 1010 moles of carbon dioxide per year are released from the slab beneath the forearc, and thus up to about 19 per cent less carbon is being transferred into Earth's deep mantle than previously estimated.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , Sedimentos Geológicos/química , Biomassa , Isótopos de Carbono , Costa Rica , Sedimentos Geológicos/microbiologia , Hélio
6.
Environ Sci Technol ; 57(26): 9459-9473, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37327355

RESUMO

Carbon capture and storage (CCS) is an important component in many national net-zero strategies. Ensuring that CO2 can be safely and economically stored in geological systems is critical. To date, CCS research has focused on the physiochemical behavior of CO2, yet there has been little consideration of the subsurface microbial impact on CO2 storage. However, recent discoveries have shown that microbial processes (e.g., methanogenesis) can be significant. Importantly, methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir. Such changes may subsequently reduce the volume of CO2 that can be stored and change the mobility and future trapping systematics of the evolved supercritical fluid. Here, we review the current knowledge of how microbial methanogenesis could impact CO2 storage, including the potential scale of methanogenesis and the range of geologic settings under which this process operates. We find that methanogenesis is possible in all storage target types; however, the kinetics and energetics of methanogenesis will likely be limited by H2 generation. We expect that the bioavailability of H2 (and thus potential of microbial methanogenesis) will be greatest in depleted hydrocarbon fields and least within saline aquifers. We propose that additional integrated monitoring requirements are needed for CO2 storage to trace any biogeochemical processes including baseline, temporal, and spatial studies. Finally, we suggest areas where further research should be targeted in order to fully understand microbial methanogenesis in CO2 storage sites and its potential impact.


Assuntos
Dióxido de Carbono , Água Subterrânea , Carbono
7.
Nature ; 516(7531): 379-82, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519136

RESUMO

Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.


Assuntos
Sedimentos Geológicos/química , Hidrogênio/química , Gases , Fenômenos Geológicos , Fontes Hidrotermais , Água do Mar/química
8.
Nature ; 497(7449): 357-60, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23676753

RESUMO

Fluids trapped as inclusions within minerals can be billions of years old and preserve a record of the fluid chemistry and environment at the time of mineralization. Aqueous fluids that have had a similar residence time at mineral interfaces and in fractures (fracture fluids) have not been previously identified. Expulsion of fracture fluids from basement systems with low connectivity occurs through deformation and fracturing of the brittle crust. The fractal nature of this process must, at some scale, preserve pockets of interconnected fluid from the earliest crustal history. In one such system, 2.8 kilometres below the surface in a South African gold mine, extant chemoautotrophic microbes have been identified in fluids isolated from the photosphere on timescales of tens of millions of years. Deep fracture fluids with similar chemistry have been found in a mine in the Timmins, Ontario, area of the Canadian Precambrian Shield. Here we show that excesses of (124)Xe, (126)Xe and (128)Xe in the Timmins mine fluids can be linked to xenon isotope changes in the ancient atmosphere and used to calculate a minimum mean residence time for this fluid of about 1.5 billion years. Further evidence of an ancient fluid system is found in (129)Xe excesses that, owing to the absence of any identifiable mantle input, are probably sourced in sediments and extracted by fluid migration processes operating during or shortly after mineralization at around 2.64 billion years ago. We also provide closed-system radiogenic noble-gas ((4)He, (21)Ne, (40)Ar, (136)Xe) residence times. Together, the different noble gases show that ancient pockets of water can survive the crustal fracturing process and remain in the crust for billions of years.


Assuntos
Gases Nobres/análise , Água/análise , Água/química , Argônio/análise , Argônio/química , Atmosfera/química , Canadá , Sedimentos Geológicos/química , Hélio/análise , Hélio/química , História Antiga , Vida , Mineração , Neônio/análise , Neônio/química , Gases Nobres/química , Ontário , Xenônio/análise , Xenônio/química
9.
Nat Commun ; 13(1): 3768, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773264

RESUMO

Deep within the Precambrian basement rocks of the Earth, groundwaters can sustain subsurface microbial communities, and are targets of investigation both for geologic storage of carbon and/or nuclear waste, and for new reservoirs of rapidly depleting resources of helium. Noble gas-derived residence times have revealed deep hydrological settings where groundwaters are preserved on millions to billion-year timescales. Here we report groundwaters enriched in the highest concentrations of radiogenic products yet discovered in fluids, with an associated 86Kr excess in the free fluid, and residence times >1 billion years. This brine, from a South African gold mine 3 km below surface, demonstrates that ancient groundwaters preserved in the deep continental crust on billion-year geologic timescales may be more widespread than previously understood. The findings have implications beyond Earth, where on rocky planets such as Mars, subsurface water may persist on long timescales despite surface conditions that no longer provide a habitable zone.


Assuntos
Água Subterrânea , Microbiota , Planeta Terra , Geologia , Gases Nobres
10.
Science ; 291(5512): 2269, 2001 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-11264527
11.
Nature ; 409(6818): 327-31, 2001 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11201738

RESUMO

Except in regions of recent crustal extension, the dominant origin of carbon dioxide in fluids in sedimentary basins has been assumed to be from crustal organic matter or mineral reactions. Here we show, by contrast, that Rayleigh fractionation caused by partial degassing of a magma body can explain the CO2/3He ratios and delta13C(CO2) values observed in CO2-rich natural gases in the west Texas Val Verde basin and also the mantle 3He/22Ne ratios observed in other basin systems. Regional changes in CO2/3He and CO2/CH4 ratios can be explained if the CO2 input pre-dates methane generation in the basin, which occurred about 280 Myr ago. Uplift to the north of the Val Verde basin between 310 and 280 Myr ago appears to be the only tectonic event with appropriate timing and location to be the source of the magmatic CO2. Our identification of magmatic CO2 in a foreland basin indicates that the origin of CO2 in other mid-continent basin systems should be re-evaluated. Also, the inferred closed-system preservation of natural gas in a trapping structure for approximately 300 Myr is far longer than the residence time predicted by diffusion models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA