Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Chemistry ; 29(67): e202301762, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706581

RESUMO

Small graphene oxide (s-GO) nanosheets reversibly downregulate central nervous system (CNS) excitatory synapses, with potential developments as future therapeutic tools to treat neuro-disorders characterized by altered glutamatergic transmission. Excitotoxicity, namely cell death triggered by exceeding ambient glutamate fueling over-activation of excitatory synapses, is a pathogenic mechanism shared by several neural diseases, from ischemic stroke to neurodegenerative disorders. In this work, CNS cultures were exposed to oxygen-glucose deprivation (OGD) to mimic ischemic stroke in vitro, and it is show that the delivery of s-GO following OGD, during the endogenous build-up of secondary damage and excitotoxicity, improved neuronal survival. In a different paradigm, excitotoxicity cell damage was reproduced through exogenous glutamate application, and s-GO co-treatment protected neuronal integrity, potentially by directly downregulating the synaptic over-activation brought about by exogenous glutamate. This proof-of-concept study suggests that s-GO may find novel applications in therapeutic developments for treating excitotoxicity-driven neural cell death.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácido Glutâmico , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Oxigênio/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia
2.
Proc Natl Acad Sci U S A ; 117(41): 25212-25218, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32999065

RESUMO

The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.


Assuntos
Materiais Biomiméticos , Traumatismos da Coluna Vertebral/terapia , Alicerces Teciduais , Animais , Feminino , Microscopia Eletrônica de Varredura , Nanotecnologia , Ratos , Ratos Wistar , Traumatismos da Coluna Vertebral/diagnóstico por imagem
3.
Pediatr Res ; 92(1): 71-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480086

RESUMO

The interest in graphene-based nanomaterials (GBNs) application in nanomedicine, in particular in neurology, steadily increased in the last decades. GBNs peculiar physical-chemical properties allow the design of innovative therapeutic tools able to manipulate biological structures with subcellular resolution. In this review, we report GBNs applications to the central nervous system (CNS) when these nanomaterials are engineered as potential therapeutics to treat brain pathologies, with a focus on those of the pediatric age. We revise the state-of-the art studies addressing the impact of GBNs in the CNS, showing that the design of GBNs with different dimensions and chemical compositions or the use of specific administration routes and doses can limit unwanted side effects, exploiting GBNs efficacy in therapeutic approaches. These features favor the development of GBNs-based multifunctional devices that may find applications in the field of precision medicine for the treatment of disorders in the developing CNS. In this framework, we address the suitability of GBNs to become successful therapeutic tools, such as drug nano-delivery vectors when being chemically decorated with pharmaceutical agents and/or other molecules to obtain a high specific targeting of the diseased area and to achieve a controlled release of active molecules. IMPACT: The translational potential of graphene-based nanomaterials (GBNs) can be used for the design of novel therapeutic approaches to treat pathologies affecting the brain with a focus on the pediatric age. GBNs can be chemically decorated with pharmaceutical agents and molecules to obtain a highly specific targeting of the diseased site and a controlled drug release. The type of GBNs, the selected functionalization, the dose, and the way of administration are factors that should be considered to potentiate the therapeutic efficacy of GBNs, limiting possible side effects. GBNs-based multifunctional devices might find applications in the precision medicine and theranostics fields.


Assuntos
Grafite , Nanoestruturas , Encéfalo , Criança , Grafite/química , Humanos , Nanomedicina , Nanoestruturas/química , Preparações Farmacêuticas
4.
Cereb Cortex ; 30(9): 5147-5165, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32383447

RESUMO

Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Animais , Variações do Número de Cópias de DNA , Eletroencefalografia , Fatores de Transcrição Forkhead/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Convulsões/genética , Convulsões/metabolismo , Regulação para Cima
5.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567597

RESUMO

Extracellular vesicles are membrane-delimited structures, involved in several inter-cellular communication processes, both physiological and pathological, since they deliver complex biological cargo. Extracellular vesicles have been identified as possible biomarkers of several pathological diseases; thus, their characterization is fundamental in order to gain a deep understanding of their function and of the related processes. Traditional approaches for the characterization of the molecular content of the vesicles require a large quantity of sample, thereby providing an average molecular profile, while their heterogeneity is typically probed by non-optical microscopies that, however, lack the chemical sensitivity to provide information of the molecular cargo. Here, we perform a study of individual microvesicles, a subclass of extracellular vesicles generated by the outward budding of the plasma membrane, released by two cultures of glial cells under different stimuli, by applying a state-of-the-art infrared nanospectroscopy technique based on the coupling of an atomic force microscope and a pulsed laser, which combines the label-free chemical sensitivity of infrared spectroscopy with the nanometric resolution of atomic force microscopy. By correlating topographic, mechanical and spectroscopic information of individual microvesicles, we identified two main populations in both families of vesicles released by the two cell cultures. Subtle differences in terms of nucleic acid content among the two families of vesicles have been found by performing a fitting procedure of the main nucleic acid vibrational peaks in the 1000-1250 cm-1 frequency range.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Nanotecnologia , Espectrofotometria Infravermelho , Animais , Córtex Cerebral/citologia , Neuroglia/citologia , Ratos
6.
Arch Toxicol ; 94(3): 845-855, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125443

RESUMO

Severe hyperbilirubinemia leads to bilirubin encephalopathy in neonates, causing irreversible neurological sequelae. We investigated the nature of neuronal selective vulnerability to unconjugated bilirubin (UCB) toxicity. The maintenance of intracellular calcium homeostasis is crucial for neuron survival. Calcium release from endoplasmic reticulum (ER) during ER-stress can lead to apoptosis trough the activation of Caspase-12. By live calcium imaging we monitored the generation of calcium signals in dissociated hippocampal neurons and glial cells exposed to increasing UCB concentrations. We showed the ability of UCB to alter intracellular calcium homeostasis, inducing the appearance of repetitive intracellular calcium oscillations. The contribution of intracellular calcium stores and the induction and activation of proteins involved in the apoptotic calcium-dependent signaling were also assessed. Thapsigargin, a specific inhibitor of Sarco/endoplasmic reticulum ATPase (SERCA) pumps, significantly reduced the duration of Ca2+ oscillation associated with UCB exposure indicating that UCB strongly interfered with the reticulum calcium stores. On the contrary, in pure astrocyte cultures, spontaneous Ca2+ transient duration was not altered by UCB. The protein content of GRP78, AT6, CHOP, Calpain and Caspase-12 of neuronal cells treated with UCB for 24 h was at least twofold higher compared to controls. Calcium-dependent Calpain and Caspase-12 induction by UCB were significantly reduced by 50% and 98%, respectively when cells were pretreated with the ER-stress inhibitor 4-PBA. These results show the strong and direct interference of UCB with neuronal intracellular Ca2+ dynamics, suggesting ER Ca2+ stores as a primary target of UCB toxicity with the activation of the apoptotic ER-stress-dependent pathway.


Assuntos
Bilirrubina/metabolismo , Cálcio/metabolismo , Homeostase/fisiologia , Sistema Nervoso/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Hipocampo , Homeostase/efeitos dos fármacos , Humanos
7.
Nanomedicine ; 26: 102174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32147408

RESUMO

Anxiety disorders (ADs) are nervous system maladies involving changes in the amygdala synaptic circuitry, such as an upregulation of excitatory neurotransmission at glutamatergic synapses. In the field of nanotechnology, thin graphene oxide flakes with nanoscale lateral size (s-GO) have shown outstanding promise for the manipulation of excitatory neuronal transmission with high temporal and spatial precision, thus they were considered as ideal candidates for modulating amygdalar glutamatergic transmission. Here, we validated an in vitro model of amygdala circuitry as a screening tool to target synapses, towards development of future ADs treatments. After one week in vitro, dissociated amygdalar neurons reconnected forming functional networks, whose development recapitulated that of the tissue of origin. When acutely applied to these cultures, s-GO flakes induced a selective modification of excitatory activity. This type of interaction between s-GO and amygdalar neurons may form the basis for the exploitation of alternative approaches in the treatment of ADs.


Assuntos
Transtornos de Ansiedade/terapia , Grafite/farmacologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Transtornos de Ansiedade/fisiopatologia , Ácido Glutâmico/metabolismo , Grafite/química , Humanos , Nanoestruturas/química , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos
8.
Nano Lett ; 19(5): 2858-2870, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983361

RESUMO

Synapses compute and transmit information to connect neural circuits and are at the basis of brain operations. Alterations in their function contribute to a vast range of neuropsychiatric and neurodegenerative disorders and synapse-based therapeutic intervention, such as selective inhibition of synaptic transmission, may significantly help against serious pathologies. Graphene is a two-dimensional nanomaterial largely exploited in multiple domains of science and technology, including biomedical applications. In hippocampal neurons in culture, small graphene oxide nanosheets (s-GO) selectively depress glutamatergic activity without altering cell viability. Glutamate is the main excitatory neurotransmitter in the central nervous system and growing evidence suggests its involvement in neuropsychiatric disorders. Here we demonstrate that s-GO directly targets the release of presynaptic vesicle. We propose that s-GO flakes reduce the availability of transmitter, via promoting its fast release and subsequent depletion, leading to a decline ofglutamatergic neurotransmission. We injected s-GO in the hippocampus in vivo, and 48 h after surgery ex vivo patch-clamp recordings from brain slices show a significant reduction in glutamatergic synaptic activity in respect to saline injections.


Assuntos
Grafite/farmacologia , Nanoestruturas/química , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fármacos Atuantes sobre Aminoácidos Excitatórios/síntese química , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Grafite/síntese química , Grafite/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Nanoestruturas/uso terapêutico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Cultura Primária de Células , Pontos Quânticos/química , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
9.
J Neuroinflammation ; 16(1): 127, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238967

RESUMO

BACKGROUND: Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1ß, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits. METHODS: We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation. RESULTS: Local inflammation in slice cultures induced by CK or LPS stimulations boosts network activity; however, only CKs specifically reduced GABAergic current duration. We pharmacologically investigated the contribution of GABAAR α-subunits and suggested that a switch of GABAAR α1-subunit might have induced faster GABAAR decay time, weakening the inhibitory transmission. CONCLUSIONS: Lower GABAergic current duration could contribute to providing an aberrant excitatory transmission critical for pre-motor circuit tasks and represent a specific feature of a CK cocktail able to mimic an inflammatory reaction that spreads in the CNS. Our results describe a selective mechanism that could be triggered during specific inflammatory stress.


Assuntos
Citocinas/toxicidade , GABAérgicos/farmacocinética , Inflamação/induzido quimicamente , Transmissão Sináptica/efeitos dos fármacos , Animais , Citocinas/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Medula Espinal , Transmissão Sináptica/imunologia
10.
Small ; 14(28): e1800863, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29862640

RESUMO

Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.


Assuntos
Benzenossulfonatos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Impressão Molecular/métodos , Neuroglia/metabolismo , Polímeros/química , Animais , Astrócitos/citologia , Quimiocinas/metabolismo , Técnicas Eletroquímicas , Microeletrodos , Ratos Sprague-Dawley , Ratos Wistar
11.
Nanomedicine ; 14(7): 2521-2532, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28552645

RESUMO

Carbon nanotube-based biomaterials critically contribute to the design of many prosthetic devices, with a particular impact in the development of bioelectronics components for novel neural interfaces. These nanomaterials combine excellent physical and chemical properties with peculiar nanostructured topography, thought to be crucial to their integration with neural tissue as long-term implants. The junction between carbon nanotubes and neural tissue can be particularly worthy of scientific attention and has been reported to significantly impact synapse construction in cultured neuronal networks. In this framework, the interaction of 2D carbon nanotube platforms with biological membranes is of paramount importance. Here we study carbon nanotube ability to interfere with lipid membrane structure and dynamics in cultured hippocampal neurons. While excluding that carbon nanotubes alter the homeostasis of neuronal membrane lipids, in particular cholesterol, we document in aged cultures an unprecedented functional integration between carbon nanotubes and the physiological maturation of the synaptic circuits.


Assuntos
Hipocampo/fisiologia , Nanoestruturas/química , Nanotubos de Carbono/química , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Alicerces Teciduais , Animais , Animais Recém-Nascidos , Células Cultivadas , Hipocampo/citologia , Redes Neurais de Computação , Neurônios/citologia , Ratos
12.
J Physiol ; 594(13): 3827-40, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27098371

RESUMO

KEY POINTS: Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS). In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by a progressive degeneration of motoneurons (MNs). In a previous study, we developed organotypic spinal cultures from an ALS mouse model expressing a mutant form of human superoxide dismutase 1 (SOD1(G93A) ). We reported the presence of a significant synaptic rearrangement expressed by these embryonic cultured networks, which may lead to the altered development of spinal synaptic signalling, which is potentially linked to the adult disease phenotype. Recent studies on the same ALS mouse model reported a selective loss of glycinergic innervation in cultured MNs, suggestive of a contribution of synaptic inhibition to MN dysfunction and degeneration. In the present study, we further exploit organotypic cultures from wild-type and SOD1(G93A) mice to investigate the development of glycine-receptor-mediated synaptic currents recorded from the interneurons of the premotor ventral circuits. We performed single cell electrophysiology, immunocytochemistry and confocal microscopy and suggest that GABA co-release may speed the decay of glycine responses altering both temporal precision and signal integration in SOD1(G93A) developing networks at the postsynaptic site. Our hypothesis is supported by the finding of an increased MN bursting activity in immature SOD1(G93A) spinal cords and by immunofluorescence microscopy detection of a longer persistence of GABA in SOD1(G93A) glycinergic terminals in cultured and ex vivo spinal slices.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Interneurônios/fisiologia , Medula Espinal/fisiologia , Superóxido Dismutase-1/genética , Ácido gama-Aminobutírico/fisiologia , Animais , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Camundongos Transgênicos , Receptores de Glicina/fisiologia , Transmissão Sináptica
13.
J Cardiovasc Electrophysiol ; 25(12): 1385-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25091811

RESUMO

BACKGROUND: The use of carbon nanotubes (CNTs) in oncology has been proposed for the purpose of sensitizing tumors to radiofrequency (RF) ablation. We hypothesize that myocardial tissue infiltrated with CNTs will improve thermal conductivity of RF heating and lead to altered ablation lesion characteristics. METHODS: An ex vivo model consisting of viable bovine myocardium, a circulating saline bath at 37 °C, a submersible load cell, and a deflectable sheath was assembled. A 4-mm nonirrigated ablation catheter was positioned with 10 gm of force over bovine myocardium infiltrated with CNTs, 0.9% saline, or sham injections. A series of ablation lesions were delivered at 20 and 50 W, and lesion volumes were acquired by analyzing tissue sections with a digital micrometer. Tissue temperature analyses at 3 and 5 mm depths were also performed. RESULTS: Myocardial tissue treated with CNTs resulted in significantly larger lesions at both low and high power settings. The electrical impedance was increased in CNT treated tissue with a greater impedance change observed in the CNT infiltrated myocardium. The thermal conductivity of heat generated by application of RF in the tissue was altered by the presence of CNTs, resulting in higher temperatures at 3 and 5 mm depths for both 20 and 50 W. CONCLUSIONS: Myocardial tissue treated with CNTs resulted in significantly larger lesions at both low and high power settings. The electrical and thermal conductivity of heat generated by application of RF in myocardial tissue was altered by the presence of CNTs. Further research is needed to assess the in vivo applicability for this concept of facilitated ablation with CNTs.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Ablação por Cateter/métodos , Coração/efeitos dos fármacos , Coração/fisiologia , Nanopartículas/uso terapêutico , Nanotubos de Carbono , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Bovinos , Terapia Combinada , Técnicas In Vitro , Miocárdio/patologia , Resultado do Tratamento
14.
Top Curr Chem ; 348: 181-204, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24072586

RESUMO

As a result of their peculiar features, carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kinds of tissues.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Coração
15.
Nano Lett ; 13(12): 6098-105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224474

RESUMO

Nanomaterials interact with cells and modify their function and biology. Manufacturing this ability can provide tissue-engineering scaffolds with nanostructures able to influence tissue growth and performance. Carbon nanotube compatibility with biomolecules motivated ongoing interest in the development of biosensors and devices including such materials. More recently, carbon nanotubes have been applied in several areas of nerve tissue engineering to study cell behavior or to instruct the growth and organization of neural networks. To gather further knowledge on the true potential of future constructs, in particular to assess their immune-modulatory action, we evaluate carbon nanotubes interactions with human dendritic cells (DCs). DCs are professional antigen-presenting cells and their behavior can predict immune responses triggered by adhesion-dependent signaling. Here, we incorporate DC cultures to carbon nanotubes and we show by phenotype, microscopy, and transcriptional analysis that in vitro differentiated and activated DCs show when interfaced to carbon nanotubes a lower immunogenic profile.


Assuntos
Células Dendríticas/química , Imunidade Inata , Nanotubos de Carbono/química , Engenharia Tecidual , Adesão Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Rede Nervosa/química , Rede Nervosa/imunologia , Neurônios/química , Neurônios/imunologia , Alicerces Teciduais/química
16.
Angew Chem Int Ed Engl ; 53(30): 7714-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24917379

RESUMO

Graphing graphene: Because the naming of graphene-based materials (GBMs) has led to confusion and inconsistency, a classification approach is necessary. Three physical-chemical properties of GBMs have been defined by the GRAPHENE Flagship Project of the European Union for the unequivocal classification of these materials (see grid).


Assuntos
Grafite/química , Nanoestruturas/química , Teste de Materiais , Nanotecnologia
17.
Mol Brain ; 17(1): 4, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263055

RESUMO

The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.


Assuntos
Esclerose Múltipla , Humanos , Citocinas , Doenças Neuroinflamatórias , Encéfalo , Sistema Nervoso Central
18.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744490

RESUMO

Oligodendrocytes, the myelin-producing glial cells of the central nervous system (CNS), crucially contribute to myelination and circuit function. An increasing amount of evidence suggests that intracellular calcium (Ca2+) dynamics in oligodendrocytes mediates activity-dependent and activity-independent myelination. Unraveling how myelinating oligodendrocytes orchestrate and integrate Ca2+ signals, particularly in relation to axonal firing, is crucial for gaining insights into their role in the CNS development and function, both in health and disease. In this framework, we used the recombinant adeno-associated virus/Olig001 capsid variant to express the genetically encoded Ca2+ indicator jGCaMP8s, under the control of the myelin basic protein promoter. In our study, this tool exhibits excellent tropism and selectivity for myelinating and mature oligodendrocytes, and it allows monitoring Ca2+ activity in myelin-forming cells, both in isolated primary cultures and organotypic spinal cord explants. By live imaging of myelin Ca2+ events in oligodendrocytes within organ cultures, we observed a rapid decline in the amplitude and duration of Ca2+ events across different in vitro developmental stages. Active myelin sheath remodeling and growth are modulated at the level of myelin-axon interface through Ca2+ signaling, and, during early myelination in organ cultures, this phase is finely tuned by the firing of axon action potentials. In the later stages of myelination, Ca2+ events in mature oligodendrocytes no longer display such a modulation, underscoring the involvement of complex Ca2+ signaling in CNS myelination.


Assuntos
Cálcio , Dependovirus , Bainha de Mielina , Oligodendroglia , Técnicas de Cultura de Órgãos , Medula Espinal , Animais , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Medula Espinal/citologia , Cálcio/metabolismo , Dependovirus/genética , Bainha de Mielina/metabolismo , Sinalização do Cálcio/fisiologia , Camundongos Endogâmicos C57BL , Camundongos , Células Cultivadas , Feminino , Ratos
19.
Nanoscale Horiz ; 9(5): 785-798, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38466179

RESUMO

MoS2 nanosheets belong to an emerging family of nanomaterials named bidimensional transition metal dichalcogenides (2D TMDCs). The use of such promising materials, featuring outstanding chemical and physical properties, is expected to increase in several fields of science and technology, with an enhanced risk of environmental dispersion and associated wildlife and human exposures. In this framework, the assessment of MoS2 nanosheets toxicity is instrumental to safe industrial developments. Currently, the impact of the nanomaterial on the nervous tissue is unexplored. In this work, we use as in vivo experimental model the early-stage zebrafish, to investigate whether mechano-chemically exfoliated MoS2 nanosheets reach and affect, when added in the behavioral ambient, the nervous system. By high throughput screening of zebrafish larvae locomotor behavioral changes upon exposure to MoS2 nanosheets and whole organism live imaging of spinal neuronal and glial cell calcium activity, we report that sub-acute and prolonged ambient exposures to MoS2 nanosheets elicit locomotor abnormalities, dependent on dose and observation time. While 25 µg mL-1 concentration treatments exerted transient effects, 50 µg mL-1 ones induced long-lasting changes, correlated to neuroinflammation-driven alterations in the spinal cord, such as astrogliosis, glial intracellular calcium dysregulation, neuronal hyperactivity and motor axons retraction. By combining integrated technological approaches to zebrafish, we described that MoS2 2D nanomaterials can reach, upon water (i.e. ambient) exposure, the nervous system of larvae, resulting in a direct neurological damage.


Assuntos
Dissulfetos , Locomoção , Molibdênio , Medula Espinal , Peixe-Zebra , Animais , Locomoção/efeitos dos fármacos , Dissulfetos/química , Dissulfetos/toxicidade , Molibdênio/toxicidade , Molibdênio/química , Medula Espinal/efeitos dos fármacos , Doenças Neuroinflamatórias/induzido quimicamente , Nanoestruturas/toxicidade , Nanoestruturas/química , Larva/efeitos dos fármacos , Neurônios/efeitos dos fármacos
20.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350010

RESUMO

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA