Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Stat ; 21(2): 439-459, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34907654

RESUMO

There are several steps to confirming the safety and efficacy of a new medicine. A sequence of trials, each with its own objectives, is usually required. Quantitative risk metrics can be useful for informing decisions about whether a medicine should transition from one stage of development to the next. To obtain an estimate of the probability of regulatory approval, pharmaceutical companies may start with industry-wide success rates and then apply to these subjective adjustments to reflect program-specific information. However, this approach lacks transparency and fails to make full use of data from previous clinical trials. We describe a quantitative Bayesian approach for calculating the probability of success (PoS) at the end of phase II which incorporates internal clinical data from one or more phase IIb studies, industry-wide success rates, and expert opinion or external data if needed. Using an example, we illustrate how PoS can be calculated accounting for differences between the phase II data and future phase III trials, and discuss how the methods can be extended to accommodate accelerated drug development pathways.


Assuntos
Desenvolvimento de Medicamentos , Projetos de Pesquisa , Teorema de Bayes , Desenvolvimento de Medicamentos/métodos , Humanos , Probabilidade
2.
Pharm Stat ; 21(5): 1005-1021, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373454

RESUMO

Pharmaceutical companies regularly need to make decisions about drug development programs based on the limited knowledge from early stage clinical trials. In this situation, eliciting the judgements of experts is an attractive approach for synthesising evidence on the unknown quantities of interest. When calculating the probability of success for a drug development program, multiple quantities of interest-such as the effect of a drug on different endpoints-should not be treated as unrelated. We discuss two approaches for establishing a multivariate distribution for several related quantities within the SHeffield ELicitation Framework (SHELF). The first approach elicits experts' judgements about a quantity of interest conditional on knowledge about another one. For the second approach, we first elicit marginal distributions for each quantity of interest. Then, for each pair of quantities, we elicit the concordance probability that both lie on the same side of their respective elicited medians. This allows us to specify a copula to obtain the joint distribution of the quantities of interest. We show how these approaches were used in an elicitation workshop that was performed to assess the probability of success of the registrational program of an asthma drug. The judgements of the experts, which were obtained prior to completion of the pivotal studies, were well aligned with the final trial results.


Assuntos
Asma , Desenvolvimento de Medicamentos , Asma/tratamento farmacológico , Humanos , Preparações Farmacêuticas , Probabilidade
3.
Pharm Stat ; 15(5): 430-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27485522

RESUMO

A composite endpoint consists of multiple endpoints combined in one outcome. It is frequently used as the primary endpoint in randomized clinical trials. There are two main disadvantages associated with the use of composite endpoints: a) in conventional analyses, all components are treated equally important; and b) in time-to-event analyses, the first event considered may not be the most important component. Recently Pocock et al. (2012) introduced the win ratio method to address these disadvantages. This method has two alternative approaches: the matched pair approach and the unmatched pair approach. In the unmatched pair approach, the confidence interval is constructed based on bootstrap resampling, and the hypothesis testing is based on the non-parametric method by Finkelstein and Schoenfeld (1999). Luo et al. (2015) developed a close-form variance estimator of the win ratio for the unmatched pair approach, based on a composite endpoint with two components and a specific algorithm determining winners, losers and ties. We extend the unmatched pair approach to provide a generalized analytical solution to both hypothesis testing and confidence interval construction for the win ratio, based on its logarithmic asymptotic distribution. This asymptotic distribution is derived via U-statistics following Wei and Johnson (1985). We perform simulations assessing the confidence intervals constructed based on our approach versus those per the bootstrap resampling and per Luo et al. We have also applied our approach to a liver transplant Phase III study. This application and the simulation studies show that the win ratio can be a better statistical measure than the odds ratio when the importance order among components matters; and the method per our approach and that by Luo et al., although derived based on large sample theory, are not limited to a large sample, but are also good for relatively small sample sizes. Different from Pocock et al. and Luo et al., our approach is a generalized analytical method, which is valid for any algorithm determining winners, losers and ties. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Ensaios Clínicos Fase III como Assunto/estatística & dados numéricos , Determinação de Ponto Final/estatística & dados numéricos , Transplante de Fígado/estatística & dados numéricos , Ensaios Clínicos Fase III como Assunto/métodos , Determinação de Ponto Final/métodos , Humanos
4.
Clin Pharmacol Ther ; 111(5): 1050-1060, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34762298

RESUMO

The point at which clinical development programs transition from early phase to pivotal trials is a critical milestone. Substantial uncertainty about the outcome of pivotal trials may remain even after seeing positive early phase data, and companies may need to make difficult prioritization decisions for their portfolio. The probability of success (PoS) of a program, a single number expressed as a percentage reflecting the multitude of risks that may influence the final program outcome, is a key decision-making tool. Despite its importance, companies often rely on crude industry benchmarks that may be "adjusted" by experts based on undocumented criteria and which are typically misaligned with the definition of success used to drive commercial forecasts, leading to overly optimistic expected net present value calculations. We developed a new framework to assess the PoS of a program before pivotal trials begin. Our definition of success encompasses the successful outcome of pivotal trials, regulatory approval and meeting the requirements for market access as outlined in the target product profile. The proposed approach is organized in four steps and uses an innovative Bayesian approach to synthesize all relevant evidence. The new PoS framework is systematic and transparent. It will help organizations to make more informed decisions. In this paper, we outline the rationale and elaborate on the structure of the proposed framework, provide examples, and discuss the benefits and challenges associated with its adoption.


Assuntos
Teorema de Bayes , Humanos , Probabilidade , Incerteza
5.
Patterns (N Y) ; 2(8): 100312, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34430930

RESUMO

We describe a novel collaboration between academia and industry, an in-house data science and artificial intelligence challenge held by Novartis to develop machine-learning models for predicting drug-development outcomes, building upon research at MIT using data from Informa as the starting point. With over 50 cross-functional teams from 25 Novartis offices around the world participating in the challenge, the domain expertise of these Novartis researchers was leveraged to create predictive models with greater sophistication. Ultimately, two winning teams developed models that outperformed the baseline MIT model-areas under the curve of 0.88 and 0.84 versus 0.78, respectively-through state-of-the-art machine-learning algorithms and the use of newly incorporated features and data. In addition to validating the variables shown to be associated with drug approval in the earlier MIT study, the challenge also provided new insights into the drivers of drug-development success and failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA