RESUMO
The quality standards for the export of chestnuts generate large quantities of rejected fruits, which require novel processing technologies for their safe industrial utilization. This study aimed to investigate the impact of high-pressure processing (HPP) and hydrothermal treatments (HT) on the physicochemical properties of rejected chestnut starch. Chestnuts were treated by HPP at 400, 500, and 600 MPa for 5 min and HT at 50 °C for 45 min. In general, all HPP treatments did not induce starch gelatinization, and their granules preserved the integrity and Maltese-cross. Moreover, starch granules' size and resistant starch content increased with the intensity of pressure. Native and HT chestnut starches were the most susceptible to digestion. HPP treatments did not affect the C-type crystalline pattern of native starch, but the crystalline region was gradually modified to become amorphous. HPP-600 MPa treated starch showed modified pasting properties and exhibited the highest values of peak viscosity. This study demonstrates for the first time that after HPP-600 MPa treatment, a novel chestnut starch gel structure is obtained. Moreover, HPP treatments could increase the slow-digesting starch, which benefits the development of healthier products. HPP can be considered an interesting technology to obtain added-value starch from rejected chestnut fruits.
Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Nozes/química , Amido Resistente/análiseRESUMO
Cassava plays a key role in the food production and economies of several countries worldwide. Due to its starch content, alcoholic fermentation is a promising transformation process for adding value to cassava. However, most of the existing cassava beverages are from traditional origin, with the yields and quality often poorly known or controlled due to the use of artisanal production processes. This work aims at the application of easily implementable biotechnological tools for the production of cassava spirits, in order to add value to this raw material. Cassava flour was liquefied and saccharified using enzymatic cocktails, generating a fermentable broth with ~184 g L-1 of fermentable sugars. This was then fermented into an alcoholic product with ~10% ethanol by volume and distilled for spirit production. Cassava spirits with 40% ethanol by volume, with or without application of oak wood, were produced. For further valorization, volatile fractions of cassava spirits were characterized by gas chromatography-flame ionization detection (GC-FID) and GC-MS. These showed a predominance of yeast fermentation metabolites, complemented by wood extractives where oak chips were applied. Both produced spirits showed desirable sensory traits, receiving good acceptance by experienced tasters, demonstrating the feasibility of the proposed process to add value to cassava surplus.
Assuntos
Produtos Biológicos/química , Fenômenos Químicos , Destilação , Fermentação , Manihot/química , Biotecnologia , Etanol , HidróliseRESUMO
Metallic and bimetallic nanostructures have shown interesting chromatic and antibacterial properties, and they can be used in various applications. In this work, zinc (Zn) and iron (Fe) nanostructures were produced with different morphologies: (i) pure Zn; (ii) Zn-Fe nanoalloys; (iii) Zn-Fe nanolayers (Zn-Fe NLs); and (iv) Zn nanolayers combined with Fe nanoparticles (Zn NLs + Fe NPs). The aim was to produce components for food packaging materials with active and intelligent properties, including oxygen absorption capacity, chromatic properties, and antibacterial properties. Thus, the morphology, structure, and chemical composition of the samples were characterized and correlated with their oxidation, chromatic, and antibacterial properties. The results revealed a relevant reduction in the coating's opacity after oxidation varying from 100 to 10% depending on the morphology of the system. All coatings exhibited significant antibacterial activity against S. aureus, revealing a direct correlation with Zn content. The incorporation of Fe for all atomic arrangements showed a negative impact on the antibacterial effect against E. coli, decreasing to less than half the zone of inhibition for Zn-Fe NLs and Zn NLs + Fe NPs and suppressing the antibacterial effect for Zn-Fe alloy when compared with the pure Zn system.
RESUMO
This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 â 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 µmol TE/g (DPPH), 45.7 µmol TE/g (ABTS), and 79.9 µmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.
Assuntos
Antioxidantes , Prebióticos , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/químicaRESUMO
Olive pomace (OP) is the main residue that results from olive oil production. OP is rich in bioactive compounds, including polyphenols, so its use in the treatments of diseases related to oxidative stress, such as cancer, could be considered. The present work aimed to study the biological properties of different OP extracts, obtained by ohmic heating-assisted extraction and conventional heating, using water and 50% ethanol, in the treatment and prevention of colorectal cancer through Caco-2 cell models. Additionally, an in-silico analysis was performed to identify the phenolic intestinal absorption and Caco-2 permeability. The extracts were chemically characterized, and it was found that the Ohmic-hydroethanolic (OH-EtOH) extract had the highest antiproliferative effect, probably due to its higher content of phenolic compounds. The OH-EtOH induced potential modifications in the mitochondrial membrane and led to apoptosis by cell cycle arrest in the G1/S phases with activation of p53 and caspase 3 proteins. In addition, this extract protected the intestine against oxidative stress (ROS) caused by H2O2. Therefore, the bioactive compounds present in OP and recovered by applying a green technology such as ohmic-heating, show promising potential to be used in food, nutraceutical, and biomedical applications, reducing this waste and facilitating the circular economy.
RESUMO
This work aimed to evaluate the potential of chitosan/cellulose nanocrystals (CNC) films to be used as active pads for meat packages to prolong its shelf-life and preserve its properties over time. Several CNC concentrations (5, 10, 25, and 50 wt%) were tested and the films were produced by solvent casting. The developed samples were characterized by ATR-FTIR, TGA, FESEM, and XRD. The transparency, antimicrobial, barrier and mechanical properties were also assessed. Finally, the films' ability to prolong food shelf-life was studied in real conditions using chicken meat. CNC incorporation improved the thermal stability and the oxygen barrier while the water vapor permeability was maintained. An enhancement of mechanical properties was also observed by the increase in tensile strength and Young's modulus in chitosan/CNC films. These films demonstrated bactericidal effect against Gram-positive and Gram-negative bacteria and fungicidal activity against Candida albicans. Lastly, chitosan-based films decreased the growth of Pseudomonas and Enterobacteriaceae bacteria in meat during the first days of storage compared to commercial membranes, while chitosan/CNC films reduced the total volatile basic nitrogen (TVB-N), indicating their efficiency in retarding meat's spoilage under refrigeration conditions. This work highlights the great potential of natural-based films to act as green alternatives for food preservation.
Assuntos
Antibacterianos/química , Celulose/química , Quitosana/química , Embalagem de Alimentos , Membranas Artificiais , Nanopartículas/química , Conservação de Alimentos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , RefrigeraçãoRESUMO
Vine Pruning residue was submitted to conventional heating and ohmic heating (OH) for the extraction of bioactive compounds and analyzed for total phenolic content (TPC), polyphenolic profile, antioxidant activity, antimicrobial activity and anticancer activity. The OH extracts were obtained using Low electric field (496.0 V/cm) or Intermediate electric field - IEF (840.0 V/cm). The tests were performed using 45% (v/v) ethanol-water extraction solution at 80 °C at different extraction times (20-90 min). The extract that stood out among the others concerning anticancer potential was the one obtained by OH when used, IEF, where the TPC was significantly higher than in the other extracts which correlated with higher antioxidant, antimicrobial and anti-proliferative activity on different tumor cell lines (HepG2, MDA-MB-231, MCF-7 and Caco2). Vine pruning OH extracts obtained using green solvents by an eco-friendly procedure were revealed as a source of compounds with relevant antioxidant and anticancer activity.
Assuntos
Antioxidantes/química , Extratos Vegetais/química , Polifenóis/química , Vitis/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Temperatura Alta , Humanos , Polifenóis/farmacologiaRESUMO
Extracts rich in polysaccharides were obtained by alkali pretreatment (PA) or autohydrolysis (PB) of spent coffee grounds, and incorporated into a carboxymethyl cellulose (CMC)-based film aiming at the development of bio-based films with new functionalities. Different concentrations of PA or PB (up to 0.20% w/v) were added to the CMC-based film and the physicochemical properties of the final films were determined. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, as well as determinations of optical and mechanical properties, moisture content, solubility in water, water vapor permeability, contact angle and sorption isotherms were performed. The addition of PA or PB resulted in important changes in the properties of the CMC-based film, mainly in color and opacity. The polysaccharides incorporation significantly improved the light barrier of the film and provided an enhancement or at least a preservation in the physicochemical properties.
Assuntos
Carboximetilcelulose Sódica/química , Café/química , Membranas Artificiais , Polissacarídeos/química , Cor , Embalagem de Alimentos , Humanos , Cinética , Permeabilidade , Polissacarídeos/isolamento & purificação , Vapor , Resistência à Tração , Termodinâmica , ResíduosRESUMO
The extraction of polysaccharides by autohydrolysis of spent coffee grounds (SCG) was studied. Experimental assays were performed using different temperatures (160-200°C), liquid/solid ratios (5-15ml water/g SCG) and extraction times (10-50min) in order to determine the conditions that maximize the extraction of polysaccharides with high antioxidant activity. Autohydrolysis was demonstrated to be an efficient technique to recover antioxidant polysaccharides from SCG. The best process conditions consisted in using 15ml water/g SCG, during 10min at 160°C. The polysaccharides obtained under these conditions were mainly in the form of galactomannans and arabinogalactans. They presented high antioxidant activity (assessed by four different methods), were thermostable in a large range of temperature, and had a typical carbohydrate pattern, being of interest for industrial applications, mainly in the food area.
Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Café/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Hidrólise , Temperatura , Água/químicaRESUMO
Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved.
Assuntos
Antioxidantes/isolamento & purificação , Café , Fenóis/isolamento & purificação , Dessecação , Liofilização , Goma ArábicaRESUMO
Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry.