Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 183(2): 347-362.e24, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33064988

RESUMO

Neoantigens arise from mutations in cancer cells and are important targets of T cell-mediated anti-tumor immunity. Here, we report the first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. This analysis of 82 patients demonstrated that the regimen was safe, with no treatment-related serious adverse events observed. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination in all of the patients. The vaccine-induced T cells had a cytotoxic phenotype and were capable of trafficking to the tumor and mediating cell killing. In addition, epitope spread to neoantigens not included in the vaccine was detected post-vaccination. These data support the safety and immunogenicity of this regimen in patients with advanced solid tumors (Clinicaltrials.gov: NCT02897765).


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Medicina de Precisão/métodos , Idoso , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Pessoa de Meia-Idade , Mutação , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia
2.
Cancers (Basel) ; 14(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740673

RESUMO

At the site of the tumor, myeloid derived suppressor cells (MDSCs) infiltrate and interact with elements of the tumor microenvironment in complex ways. Within the invading tumor, MDSCs are exposed to interstitial fluid flow (IFF) that exists within the chronic inflammatory tumor microenvironment at the tumor-lymphatic interface. As drivers of cell migration and invasion, the link between interstitial fluid flow, lymphatics, and MDSCs have not been clearly established. Here, we hypothesized that interstitial fluid flow and cells within the breast tumor microenvironment modulate migration of MDSCs. We developed a novel 3D model to mimic the breast tumor microenvironment and incorporated MDSCs harvested from 4T1-tumor bearing mice. Using live imaging, we found that sorted GR1+ splenocytes had reduced chemotactic index compared to the unsorted population, but their speed and displacement were similar. Using our adapted tissue culture insert assay, we show that interstitial fluid flow promotes MDSC invasion, regardless of absence or presence of tumor cells. Coordinating with lymphatic endothelial cells, interstitial fluid flow further enhanced invasion of MDSCs in the presence of 4T1 cells. We also show that VEGFR3 inhibition reduced both MDSC and 4T1 flow response. Together, these findings indicate a key role of interstitial fluid flow in MDSC migration as well as describe a tool to explore the immune microenvironment in breast cancer.

3.
Cancer Cell ; 40(9): 1010-1026.e11, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36027916

RESUMO

Neoantigens arising from mutations in tumor DNA provide targets for immune-based therapy. Here, we report the clinical and immune data from a Phase Ib clinical trial of a personalized neoantigen-vaccine NEO-PV-01 in combination with pemetrexed, carboplatin, and pembrolizumab as first-line therapy for advanced non-squamous non-small cell lung cancer (NSCLC). This analysis of 38 patients treated with the regimen demonstrated no treatment-related serious adverse events. Multiple parameters including baseline tumor immune infiltration and on-treatment circulating tumor DNA levels were highly correlated with clinical response. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination. Epitope spread to non-vaccinating neoantigens, including responses to KRAS G12C and G12V mutations, were detected post-vaccination. Neoantigen-specific CD4+ T cells generated post-vaccination revealed effector and cytotoxic phenotypes with increased CD4+ T cell infiltration in the post-vaccine tumor biopsy. Collectively, these data support the safety and immunogenicity of this regimen in advanced non-squamous NSCLC.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Vacinas Anticâncer/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
4.
Cell Rep Med ; 1(8): 100141, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294862

RESUMO

T cells use highly diverse receptors (TCRs) to identify tumor cells presenting neoantigens arising from genetic mutations and establish anti-tumor activity. Immunotherapy harnessing neoantigen-specific T cells to target tumors has emerged as a promising clinical approach. To assess whether a comprehensive peripheral mononuclear blood cell analysis predicts responses to a personalized neoantigen cancer vaccine combined with anti-PD-1 therapy, we characterize the TCR repertoires and T and B cell frequencies in 21 patients with metastatic melanoma who received this regimen. TCR-α/ß-chain sequencing reveals that prolonged progression-free survival (PFS) is strongly associated with increased clonal baseline TCR repertoires and longitudinal repertoire stability. Furthermore, the frequencies of antigen-experienced T and B cells in the peripheral blood correlate with repertoire characteristics. Analysis of these baseline immune features enables prediction of PFS following treatment. This method offers a pragmatic clinical approach to assess patients' immune state and to direct therapeutic decision making.


Assuntos
Antígenos de Neoplasias/imunologia , Células Sanguíneas/patologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Células Jurkat , Estudos Longitudinais , Masculino , Melanoma/patologia , Fenótipo , Intervalo Livre de Progressão , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
5.
PLoS One ; 13(6): e0197702, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864117

RESUMO

The Macrophage Migration Inhibitory Factor (MIF) is an inflammatory cytokine that is overexpressed in a number of cancer types, with increased MIF expression often correlating with tumor aggressiveness and poor patient outcomes. In this study, we aimed to better understand the link between primary tumor expression of MIF and increased tumor growth. Using the MMTV-PyMT murine model of breast cancer, we observed that elevated MIF expression promoted tumor appearance and growth. Supporting this, we confirmed our previous observation that higher MIF expression supported tumor growth in the 4T1 murine model of breast cancer. We subsequently discovered that loss of MIF expression in 4T1 cells led to decreased cell numbers and increased apoptosis in vitro under reduced serum culture conditions. We hypothesized that this increase in cell death would promote detection by the host immune system in vivo, which could explain the observed impairment in tumor growth. Supporting this, we demonstrated that loss of MIF expression in the primary tumor led to an increased abundance of intra-tumoral IFNgamma-producing CD4+ and CD8+ T cells, and that depletion of T cells from mice bearing MIF-deficient tumors restored growth to the level of MIF-expressing tumors. Furthermore, we found that MIF depletion from the tumor cells resulted in greater numbers of activated intra-tumoral dendritic cells (DCs). Lastly, we demonstrated that loss of MIF expression led to a robust induction of a specialized form of cell death, immunogenic cell death (ICD), in vitro. Together, our data suggests a model in which MIF expression in the primary tumor dampens the anti-tumor immune response, promoting tumor growth.


Assuntos
Neoplasias da Mama/genética , Imunidade Celular/genética , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Neoplasias Mamárias Animais/genética , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA