Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Pathog ; 19(12): e1011888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38113281

RESUMO

Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Animais , Estágios do Ciclo de Vida , Solo , Água/metabolismo , Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo
2.
Genomics ; 116(1): 110777, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163572

RESUMO

Genomic studies with Salmonella enterica serovar Typhimurium reveal a crucial role of horizontal gene transfer (HGT) in the acquisition of accessory cellular functions involved in host-interaction. Many virulence genes are located in genomic islands, plasmids and prophages. GreA and GreB proteins, Gre factors, interact transiently with the RNA polymerase alleviating backtracked complexes during transcription elongation. The overall effect of Gre factors depletion in Salmonella expression profile was studied. Both proteins are functionally redundant since only when both Gre factors were depleted a major effect in gene expression was detected. Remarkably, the accessory gene pool is particularly sensitive to the lack of Gre factors, with 18.6% of accessory genes stimulated by the Gre factors versus 4.4% of core genome genes. Gre factors involvement is particularly relevant for the expression of genes located in genomic islands. Our data reveal that Gre factors are required for the expression of accessory genes.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Plasmídeos , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293122

RESUMO

ppGpp is an intracellular sensor that, in response to different types of stress, coordinates the rearrangement of the gene expression pattern of bacteria to promote adaptation and survival to new environmental conditions. First described to modulate metabolic adaptive responses, ppGpp modulates the expression of genes belonging to very diverse functional categories. In Escherichia coli, ppGpp regulates the expression of cellular factors that are important during urinary tract infections. Here, we characterize the role of this alarmone in the regulation of the hlyCABDII operon of the UPEC isolate J96, encoding the toxin α-hemolysin that induces cytotoxicity during infection of bladder epithelial cells. ppGpp is required for the expression of the α-hemolysin encoded in hlyCABDII by stimulating its transcriptional expression. Prototrophy suppressor mutations in a ppGpp-deficient strain restore the α-hemolysin expression from this operon to wild-type levels, confirming the requirement of ppGpp for its expression. ppGpp stimulates hlyCABDII expression independently of RpoS, RfaH, Zur, and H-NS. The expression of hlyCABDII is promoted at 37 °C and at low osmolarity. ppGpp is required for the thermoregulation but not for the osmoregulation of the hlyCABDII operon. Studies in both commensal and UPEC isolates demonstrate that no UPEC specific factor is strictly required for the ppGpp-mediated regulation described. Our data further support the role of ppGpp participating in the coordinated regulation of the expression of bacterial factors required during infection.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Pentafosfato/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Transativadores/metabolismo
4.
Fish Shellfish Immunol ; 118: 241-250, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530078

RESUMO

Tools are required for quick and easy preliminary evaluation of functional feeds efficiency on fisheries. The analysis of skin mucus biomarkers is a recent alternative approach providing a faster feed-back from the laboratory which is characterized by being less invasive, more rapid and with reduced costs. The effect of replacing fishmeal and fish protein hydrolysates by means of two porcine by-products, the porcine spray-dried plasma (SDPP) and pig protein hydrolysate (PPH), in compound diets (50.4% crude protein, 16.2% crude protein, 22.1 MJ/kg feed) was evaluated in juvenile meagre (Argyrosomus regius) during a two-months period. To determine the impact of these dietary replacements, growth and food performance were measured together with digestive enzymes activities and filet proximal composition. Additionally, skin mucus was collected and characterized by determining main mucus biomarkers (protein, glucose, lactate, cortisol, and antioxidant capacity) and its antibacterial properties, measured by the quick in vitro co-culture challenges. In comparison to the control group, the inclusion of PPH and SDPP, in meagre diets reduced growth (7.4-8.8% in body weight), increased feed conversion ratios (9.0-10.0%), results that were attributed to a reduction in feed intake values (24.2-33.0%) (P < 0.05). Porcine blood by-products did not modify the activity of gastric and pancreatic digestive enzymes as well as those involved in nutrient absorption (alkaline phosphatase) nor liver oxidative stress condition (P > 0.05). In contrast, a reduction in fillet lipid content associated to an increase in fillet protein levels were found in fish fed SDPP and PPH diets (P < 0.05). As compared to the control diet, the dietary replacement did not alter the levels of the skin mucus biomarkers related to stress (cortisol and antioxidant capacity) or nutritional status (soluble protein, glucose and lactate) (P > 0.05). Interestingly, regardless of the worst performance in somatic growth, meagre fed diets containing both tested porcine by-products showed a significantly improved antibacterial capacity of their skin mucus. This enhancement was more prominent for fish fed with the PPH diet, which may be attributed to a higher content of immunomodulatory bioactive compounds in PPH. Further research will be necessary to provide insights on how the inclusion of SDPP and PPH, at the expense of dietary fishmeal and fish protein hydrolysates, affects feed intake and growth performance in meagre. However, the use of skin mucus biomarkers has been demonstrated to be an excellent methodology for a preliminary characterization of the functional feeds, in particular for their prophylactic properties by the study of mucus antibacterial activity.


Assuntos
Ração Animal , Antibacterianos , Dieta , Muco , Perciformes , Pele , Suínos , Animais , Antioxidantes , Biomarcadores , Dieta/veterinária , Glucose , Hidrocortisona , Lactatos , Muco/imunologia , Muco/microbiologia , Perciformes/microbiologia , Perciformes/fisiologia , Hidrolisados de Proteína , Pele/imunologia , Pele/microbiologia , Suínos/sangue
5.
PLoS Genet ; 14(6): e1007401, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879120

RESUMO

Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.


Assuntos
Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas/genética , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/genética , Regiões 3' não Traduzidas/genética , Proteínas de Bactérias/metabolismo , AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/genética , RNA Mensageiro/genética , Salmonella typhimurium/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Virulência/genética
6.
Curr Genet ; 65(1): 127-131, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30120519

RESUMO

Post-transcriptional gene regulation in bacteria plays a major role in the adaptation of bacterial cells to the changing conditions encountered in the environment. In bacteria, most of the regulation at the level of mRNA seems to be targeting the 5'untranslated regions where accessibility to the ribosome-binding site can be modulated to alter gene expression. In recent years, the role of 3'untranslated regions has gained attention also as a site for post-transcriptional regulation. In addition to be a source of trans-encoded small RNAs, the 3'untranslated regions can be targets to modulate gene expression. Taking recent findings in the post-transcriptional regulation of the hilD gene, encoding for the main regulator of virulence in Salmonella enterica serovar Typhimurium, we highlight the role of 3'untranslated regions as targets of post-transcriptional regulation mediated by small RNAs and discuss the implications of transcriptional elongation in the 3'UTR-mediated regulation in bacteria.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Virulência/genética
7.
PLoS Pathog ; 13(4): e1006312, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28426789

RESUMO

The invasion of epithelial cells by Salmonella enterica serovar Typhimurium is a very tightly regulated process. Signaling cascades triggered by different environmental and physiological signals converge to control HilD, an AraC regulator that coordinates the expression of several virulence factors. The expression of hilD is modulated at several steps of the expression process. Here, we report that the invasion of epithelial cells by S. Typhimurium strains lacking the Gre factors, GreA and GreB, is impaired. By interacting with the RNA polymerase secondary channel, the Gre factors prevent backtracking of paused complexes to avoid arrest during transcriptional elongation. Our results indicate that the Gre factors are required for the expression of the bacterial factors needed for epithelial cell invasion by modulating expression of HilD. This regulation does not occur at transcription initiation and depends on the capacity of the Gre factors to prevent backtracking of the RNA polymerase. Remarkably, genetic analyses indicate that the 3'-untranslated region (UTR) of hilD is required for Gre-mediated regulation of hilD expression. Our data provide new insight into the complex regulation of S. Typhimurium virulence and highlight the role of the hilD 3'-UTR as a regulatory motif.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Animais , Feminino , Humanos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Fatores de Virulência/metabolismo
8.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652493

RESUMO

GreA is a well-characterized transcriptional factor that acts primarily by rescuing stalled RNA polymerase complexes, but has also been shown to be the major transcriptional fidelity and proofreading factor, while it inhibits DNA break repair. Regulation of greA gene expression itself is still not well understood. So far, it has been shown that its expression is driven by two overlapping promoters and that greA leader encodes a small RNA (GraL) that is acting in trans on nudE mRNA. It has been also shown that GreA autoinhibits its own expression in vivo. Here, we decided to investigate the inner workings of this autoregulatory loop. Transcriptional fusions with lacZ reporter carrying different modifications (made both to the greA promoter and leader regions) were made to pinpoint the sequences responsible for this autoregulation, while GraL levels were also monitored. Our data indicate that GreA mediated regulation of its own gene expression is dependent on GraL acting in cis (a rare example of dual-action sRNA), rather than on the promoter region. However, a yet unidentified, additional factor seems to participate in this regulation as well. Overall, the GreA/GraL regulatory loop seems to have unique but hard to classify properties.


Assuntos
Proteínas de Escherichia coli/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/genética , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/metabolismo
9.
Environ Microbiol ; 18(12): 5277-5287, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27768816

RESUMO

Plasmids of the incompatibility group HI1 (IncHI1) have been isolated from several Gram-negative pathogens and are associated with the spread of multidrug resistance. Their conjugation is tightly regulated and it is inhibited at temperatures higher than 30°C, indicating that conjugation occurs outside warm-blooded hosts. Using R27, the prototype of IncHI1 plasmids, we report that plasmid transfer efficiency in E. coli strongly depends on the physiological state of the donor cells. Conjugation frequency is high when cells are actively growing, dropping sharply when cells enter the stationary phase of growth. Accordingly, our transcriptomic assays show significant downregulation of numerous R27 genes during the stationary phase, including several tra (transfer) genes. Growth phase-dependent regulation of tra genes transcription is independent of H-NS, a silencer of horizontal gene transfer, and ppGpp and RpoS, regulators of the stationary phase, but highly dependent on the plasmid-encoded regulatory circuit TrhR/TrhY-HtdA. The metabolic sensor cAMP, whose synthesis is chromosomally encoded, is also involved in the growth phase regulation of R27 conjugation by modulating htdA expression. Our data suggest that the involvement of regulators encoded by both chromosome and plasmid are required for efficient physiological control of IncHI1 plasmid conjugation.


Assuntos
Conjugação Genética , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Plasmídeos/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Plasmídeos/metabolismo , Regulon
10.
Environ Microbiol ; 16(4): 950-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24024872

RESUMO

It is believed that the main role of plasmids that encode multiple antibiotic resistance is to confer their hosts the ability to survive in the presence of antimicrobial compounds. In the pathogenic bacterium Salmonella, plasmids of the incompatibility group HI1 account for a significant proportion of antibiotic resistance phenotypes. In this work, we show that plasmid R27 has a strong impact on the global transcriptome of Salmonella Typhimurium strain SL1344 when cells grow at low temperature and enter the stationary phase. Down-regulated genes include pathogenicity islands, anaerobic respiration and metabolism determinants. Up-regulated genes include factors involved in the response to nutrient starvation, antimicrobial resistance, iron metabolism and the heat shock response. Accordingly, cells harbouring R27 are more resistant to heat shock than plasmid-free cells. The use of a different IncHI1 plasmid, pHCM1, provided evidence that these plasmids facilitate adaptation of Salmonella to environmental conditions outside their host(s). This is consistent with the fact that conjugative transfer of IncHI1 plasmids only occurs at low temperature. A significant number of the R27-dependent alterations in gene expression could be correlated with expression of a plasmid-encoded orthologue of the global modulator H-NS, which is up-regulated when cells grow at low temperature.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Salmonella typhimurium/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Resposta ao Choque Térmico/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Temperatura
11.
Plasmid ; 70(1): 61-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23396044

RESUMO

R27 is the prototype of the IncHI group of conjugative plasmids, which are associated with multidrug resistance in several relevant pathogens. The transfer of this plasmid is thermodependent and all transfer-related genes are encoded in six operons (tra operons). Very little is known about the factors involved in the regulation of the R27 conjugation. This report describes transcriptional studies of the six tra operons. Our results indicate that HtdA, encoded in the R27 plasmid, is involved in the transcriptional repression of four tra operons (F, H, AC and Z). Although HtdA plays a pivotal role in the transcriptional regulation of those operons, it does not exert its effect as a classical repressor. The data indicate the existence of a crosstalk between HtdA and other unknown regulatory factors. The HtdA-mediated regulation of conjugation is independent of the R27 H-NS protein.


Assuntos
Conjugação Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Plasmídeos/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
12.
Mol Microbiol ; 79(4): 827-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21299641

RESUMO

Bacteria have developed sophisticated signal transduction pathways to sense and respond to environmental stresses. These pathways include intracellular regulators that elicit adaptive changes in the physiology of the cell. Extensive work, mostly performed in Escherichia coli, showed that the modified nucleotide ppGpp plays a key regulatory role by co-ordinating the cellular responses to adverse environmental conditions. In this issue of Molecular Microbiology, Traxler et al. define two sets of ppGpp-dependent genes that are expressed at different times after induction of ppGpp synthesis. Their results suggest that quantitative differences in the ppGpp intracellular concentration determine the precise pattern of gene expression during adaptation process: low levels of ppGpp suffice to activate the Lrp regulon, which, by activating the synthesis of some amino acid pathways, can generate a negative feedback loop while high levels activate RpoS and a feed-forward amplification of the general stress response. These dose-dependent effects on gene expression open new perspectives on the complex regulatory pathways mediated by ppGpp during environmental adaptation.


Assuntos
Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/biossíntese , Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo , Regulon , Fator sigma/metabolismo , Estresse Fisiológico
13.
Life (Basel) ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36013391

RESUMO

Horizontal gene transfer (HGT) by plasmid conjugation is a major driving force in the spread of antibiotic resistance among Enterobacteriaceae. Most of the conjugation studies are based on calculation of conjugation ratios (number of transconjugants/number of donors) after viable counting of transconjugant and donor cells. The development of robust, fast and reliable techniques for in situ monitoring and quantification of conjugation ratios might accelerate progress in understanding the impact of this cellular process in the HGT. The IncHI1 plasmids, involved in multiresistance phenotypes of relevant pathogens such as Salmonella and E. coli, are distinguished by the thermosensitivity of their conjugative transfer. Conjugation mediated by IncHI1 plasmids is more efficient at temperatures lower than 30 °C, suggesting that the transfer process takes place during the environmental transit of the bacteria. In this report, we described a methodology to monitor in situ the conjugation process during agar surface matings of the IncHI1 plasmid R27 and its derepressed derivative drR27 at different temperatures. A three-color-labeling strategy was used to visualize the spatial distribution of transconjugants within the heterogeneous environment by epifluorescence and confocal microscopy. Moreover, the fluorescent labelling was also used to quantify conjugation frequencies in liquid media by flow cytometry.

14.
Antibiotics (Basel) ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453217

RESUMO

Campylobacter jejuni is a foodborne pathogen causing bacterial gastroenteritis, with the highest incidence reported in Europe. The prevalence of antibiotic resistance in C. jejuni, as well as in many other bacterial pathogens, has increased over the last few years. In this report, we describe the presence of a plasmid in a multi-drug-resistant C. jejuni strain isolated from a gastroenteritis patient. Mating experiments demonstrated the transference of this genetic element (pCjH01) among C. jejuni by plasmid conjugation. The pCjH01 plasmid was sequenced and assembled, revealing high similarity (97% identity) with pTet, a described tetracycline resistance encoding plasmid. pCjH01 (47.7 kb) is a mosaic plasmid composed of a pTet backbone that has acquired two discrete DNA regions. Remarkably, one of the acquired sequences carried an undescribed variant of the aadE-sat4-aphA-3 gene cluster, providing resistance to at least kanamycin and gentamycin. Aside from the antibiotic resistance genes, the cluster also carries genes coding for putative regulators, such as a sigma factor of the RNA polymerase and an antisigma factor. Homology searches suggest that Campylobacter exchanges genetic material with distant G-positive bacterial genera.

15.
Zoonoses Public Health ; 69(8): 966-977, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053024

RESUMO

Campylobacter, a major cause of food-borne gastroenteritis worldwide, colonize the gastrointestinal tract of a wide range of animals, being birds the main reservoir. The mechanisms involved in the interaction of Campylobacter with the different hosts are poorly understood. The cytolethal distending toxin, encoded in the cdtABC operon, is considered a pivotal virulence factor during human infection. Differences in the prevalence of cdtABC genes in Campylobacter isolates from three distinct origins (wild birds, broiler chickens and humans) prompted us to further characterize their allelic variability. The sequence of cdtABC is highly conserved among broiler and human isolates. A high diversity of cdtABC alleles was found among wild bird isolates, including several alleles that do not produce any functional CDT. These results suggest that specific variants of the cdtABC operon might define the host range of specific Campylobacter jejuni isolates. Moreover, our data indicate that PCR methodology is inaccurate to characterize the prevalence of the cdt genes, since negative PCR detection can be the result of divergences in the sequence used for primer design rather than indicating the absence of a specific gene.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Animais , Humanos , Campylobacter jejuni/genética , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/epidemiologia , Galinhas , Campylobacter/genética , Animais Selvagens , Óperon
16.
Microorganisms ; 10(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36296197

RESUMO

Rdar biofilm formation of Salmonella typhimurium and Escherichia coli is a common ancient multicellular behavior relevant in cell-cell and inter-organism interactions equally, as in interaction with biotic and abiotic surfaces. With the expression of the characteristic extracellular matrix components amyloid curli fimbriae and the exopolysaccharide cellulose, the central hub for the delicate regulation of rdar morphotype expression is the orphan transcriptional regulator CsgD. Gre factors are ubiquitously interacting with RNA polymerase to selectively overcome transcriptional pausing. In this work, we found that GreA/GreB are required for expression of the csgD operon and consequently the rdar morphotype. The ability of the Gre factors to suppress transcriptional pausing and the 147 bp 5'-UTR of csgD are required for the stimulatory effect of the Gre factors on csgD expression. These novel mechanism(s) of regulation for the csgD operon might be relevant under specific stress conditions.

17.
Animals (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36496818

RESUMO

Blood by-products are an untapped source of high-quality ingredients for aquafeeds, containing a broad variety of cytokines, hormones, growth factors, proteins, bioactive peptides, and amino acids. The effects of the spray-dried porcine plasma (SDPP), a type of processed animal protein on several immune parameters, were evaluated in sea bream using ex vivo and in vitro assays. In this study, fish were fed with two isoproteic, isolipidic, and isoenergetic diets: control diet (7% fish meal, FM) and SDPP diet (2% FM and 5% SDPP). At the end of the 92-days trial, those fed the SDPP diet were larger in body weight (p < 0.05) without differences in feed conversion ratio (p > 0.05). The ex vivo immune stimulation of splenocytes indicated that SDPP had a beneficial effect in promoting systemic immunity, since the surface cell marker (cd4), pro- (il-1ß), and anti-inflammatory (tgf-ß1) cytokines, and genes involved in humoral immunity (IgM) were up-regulated. The co-culture assays of skin mucus corroborated that SDPP enhanced the antibacterial capacity of mucus against V. anguillarum. In addition, main mucus biomarkers did not show significant differences, except for cortisol levels which were lower in the SDPP diet. The present study indicated that SDPP may be considered a functional ingredient in aquafeeds formulated with low FM levels.

18.
Microbiology (Reading) ; 157(Pt 9): 2504-2514, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680637

RESUMO

Coordination of the expression of Salmonella enterica invasion genes on Salmonella pathogenicity island 1 (SPI1) depends on a complex circuit involving several regulators that converge on expression of the hilA gene, which encodes a transcriptional activator (HilA) that modulates expression of the SPI1 virulence genes. Two of the global regulators that influence hilA expression are the nucleoid-associated proteins Hha and H-NS. They interact and form a complex that modulates gene expression. A chromosomal transcriptional fusion was constructed to assess the effects of these modulators on hilA transcription under several environmental conditions as well as at different stages of growth. The results obtained showed that these proteins play a role in silencing hilA expression at both low temperature and low osmolarity, irrespective of the growth phase. H-NS accounts for the main repressor activity. At high temperature and osmolarity, H-NS-mediated silencing completely ceases when cells enter the stationary phase, and hilA expression is induced. Mutants lacking IHF did not induce hilA in cells entering the stationary phase, and this lack of induction was dependent on the presence of H-NS. Band-shift assays and in vitro transcription data showed that for hilA induction under certain growth conditions, IHF is required to alleviate H-NS-mediated silencing.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Ilhas Genômicas/genética , Fatores Hospedeiros de Integração/metabolismo , Salmonella typhimurium/genética , Transativadores/genética , Sequência de Bases , Sítios de Ligação/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação/genética , Concentração Osmolar , Regiões Promotoras Genéticas , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Temperatura , Transcrição Gênica
19.
PLoS Pathog ; 5(2): e1000303, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19229313

RESUMO

Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Variação Antigênica , Adesão Celular , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , DNA Girase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Interpretação Estatística de Dados , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Integrases/genética , Integrases/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo , Transdução de Sinais
20.
Front Microbiol ; 12: 723431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276641

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2020.570536.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA