Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Pharm (Weinheim) ; 355(5): e2100467, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35128717

RESUMO

Although the androgen receptor (AR) is a validated target for the treatment of prostate cancer, resistance to antiandrogens necessitates the development of new therapeutic modalities. Exploiting the ubiquitin-proteasome system with proteolysis-targeting chimeras (PROTACs) has become a practical approach to degrade specific proteins and thus to extend the portfolio of small molecules used for the treatment of a broader spectrum of diseases. Herein, we present three subgroups of enzalutamide-based PROTACs in which only the exit vector was modified. By recruiting cereblon, we were able to demonstrate the potent degradation of AR in lung cancer cells. Furthermore, the initial evaluation enabled the design of an optimized PROTAC with a rigid linker that degraded AR with a DC50 value in the nanomolar range. These results provide novel AR-directed PROTACs and a clear rationale for further investigating AR involvement in lung cancer models.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Receptores Androgênicos , Humanos , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
2.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668815

RESUMO

Collagen type 1 (COL1) is a ubiquitously existing extracellular matrix protein whose high density in breast tissue favors metastasis and chemoresistance. COL1-binding of MDA-MB-231 and MCF-7 breast cancer cells is mainly dependent on ß1-integrins (ITGB1). Here, we elucidate the signaling of chemoresistance in both cell lines and their ITGB1-knockdown mutants and elucidated MAPK pathway to be strongly upregulated upon COL1 binding. Notably, Discoidin Domain Receptor 1 (DDR1) was identified as another important COL1-sensor, which is permanently active but takes over the role of COL1-receptor maintaining MAPK activation in ITGB1-knockdown cells. Consequently, inhibition of DDR1 and ERK1/2 act synergistically, and sensitize the cells for cytostatic treatments using mitoxantrone, or doxorubicin, which was associated with an impaired ABCG2 drug efflux transporter activity. These data favor DDR1 as a promising target for cancer cell sensitization, most likely in combination with MAPK pathway inhibitors to circumvent COL1 induced transporter resistance axis. Since ITGB1-knockdown also induces upregulation of pEGFR in MDA-MB-231 cells, inhibitory approaches including EGFR inhibitors, such as gefitinib appear promising for pharmacological interference. These findings provide evidence for the highly dynamic adaptation of breast cancer cells in maintaining matrix binding to circumvent cytotoxicity and highlight DDR1 signaling as a target for sensitization approaches.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/fisiologia , Integrina beta1/fisiologia , Proteínas de Neoplasias/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/biossíntese , Receptores ErbB/genética , Quinase 1 de Adesão Focal/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Indazóis/farmacologia , Integrina beta1/genética , Integrina beta4/biossíntese , Integrina beta4/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Mitoxantrona/metabolismo , Mitoxantrona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos
3.
J Med Chem ; 63(18): 10412-10432, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32787102

RESUMO

In the search for highly effective modulators addressing ABCG2-mediated MDR, 23 pyrimidines were synthesized and biologically assessed. Seven derivatives with (a) nitrogen- and/or halogen-containing residue(s) had extraordinary potencies against ABCG2 (IC50 < 150 nM). The compounds competitively inhibited ABCG2-mediated Hoechst 33342 transport but were not substrates of ABCG2. The most potent MDR reverser, compound 19, concentration-dependently increased SN-38-mediated cancer cell death at 11 nM (EC50), time-dependently doubled SN-38 toxicity in a period of 7 days at 10 nM, and half-maximally accelerated cell death combined with SN-38 at 17 nM. No induction of ABCG2 was observed. Furthermore, 11 pyrimidines were revealed as triple ABCB1/ABCC1/ABCG2 inhibitors. Five possessed IC50 values below 10 µM against each transporter, classifying them as some of the 50 most potent multitarget ABC transporter inhibitors. The most promising representative, compound 37, reversed ABCB1-, ABCC1-, and ABCG2-mediated MDR, making it one of the three most potent ABC transporter inhibitors and reversers of ABC transporters-mediated MDR.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Madin Darby de Rim Canino , Pirimidinas/síntese química
4.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118663, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987794

RESUMO

Molecular interactions of tumor cells with the microenvironment are regarded as onset of chemotherapy resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate a mechanism of CAM-DR in breast cancer cells in vitro. We show that human MCF-7 and MDA-MB-231 breast cancer cells decrease their sensitivity towards cisplatin, doxorubicin, and mitoxantrone cytotoxicity upon binding to collagen type 1 (COL1) or fibronectin (FN). The intracellular concentrations of doxorubicin and mitoxantrone were decreased upon cell cultivation on COL1, while cellular cisplatin levels remained unaffected. Since doxorubicin and mitoxantrone are transporter substrates, this refers to ATP binding cassette (ABC) efflux transporter activities. The activation of the transporters BCRP, P-gp and MRP1 was shown by fluorescence assays to distinguish the individual input of these transporters to resistance in presence of COL1 and related to their expression levels by western blot. An ABC transporter inhibitor was able to re-sensitize COL1-treated cells for doxorubicin and mitoxantrone toxicity. Antibody-blocking of ß1-integrin (ITGB1) induced sensitization towards the indicated cytostatic drugs by attenuating the increased ABC efflux activity. This refers to a key role of ITGB1 for matrix binding and subsequent transporter activation. A downregulation of α2ß1 integrin following COL1 binding appears as clear indication for the relationship between ITGB1 and ABC transporters in regulating resistance formation, while knockdown of ITGB1 leads to a significant upregulation of all three transporters. Our data provide evidence for a role of CAM-DR in breast cancer via an ITGB1 - transporter axis and offer promising therapeutic targets for cancer sensitization.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Colágeno Tipo I/metabolismo , Resistencia a Medicamentos Antineoplásicos , Integrina beta1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Adesão Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Células MCF-7 , Mitoxantrona/farmacologia
5.
Cancers (Basel) ; 10(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563275

RESUMO

Tumor cell binding to microenvironment components such as collagen type 1 (COL1) attenuates the sensitivity to cytotoxic drugs like cisplatin (CDDP) or mitoxantrone (MX), referred to as cell adhesion mediated drug resistance (CAM-DR). CAM-DR is considered as the onset for resistance mutations, but underlying mechanisms remain elusive. To evaluate CAM-DR as target for sensitization strategies, we analyzed signaling pathways in human estrogen-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells by western blot, proteome profiler array and TOP-flash assay in presence of COL1. ß1-Integrins, known to bind COL1, appear as key for mediating COL1-related resistance in both cell lines that primarily follows FAK/PI3K/AKT pathway in MCF-7, and MAPK pathway in MDA-MB-231 cells. Notably, pCREB is highly elevated in both cell lines. Consequently, blocking these pathways sensitizes the cells evidently to CDDP and MX treatment. Wnt signaling is not relevant in this context. A ß1-integrin knockdown of MCF-7 cells (MCF-7-ß1-kd) reveals a signaling shift from FAK/PI3K/AKT to MAPK pathway, thus CREB emerges as a promising primary target for sensitization in MDA-MB-231, and secondary target in MCF-7 cells. Concluding, we provide evidence for importance of CAM-DR in breast cancer cells and identify intracellular signaling pathways as targets to sensitize cells for cytotoxicity treatment regimes.

6.
Oncotarget ; 8(40): 67553-67566, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978053

RESUMO

Low molecular weight heparin (LMWH), the guideline based drug for prophylaxis and treatment of cancer-associated thrombosis, was recently shown to sensitize cisplatin resistant A2780cis human ovarian cancer cells for cisplatin cytotoxicity upon 24 h pretreatment with 50 µg × mL-1 of the LMWH tinzaparin in vitro, equivalent to a therapeutic dosage. Thereby, LMWH induced sensitization by transcriptional reprogramming of A2780cis cells via not yet elucidated mechanisms that depend on cellular proteoglycans. Here we aim to illuminate the underlying molecular mechanisms of LMWH in sensitizing A2780cis cells for cisplatin. Using TCF/LEF luciferase promotor assay (Top/Flash) we show that resistant A2780cis cells possess a threefold higher Wnt signaling activity compared to A2780 cells. Furthermore, Wnt pathway blockade by FH535 leads to higher cisplatin sensitivity of A2780cis cells. Glypican-3 (GPC3) is upregulated in A2780cis cells in response to LMWH treatment, probably as counter-regulation to sustain the high Wnt activity against LMWH. Hence, LMWH reduces the cisplatin-induced rise in Wnt activity and TCF-4 expression in A2780cis cells, but keeps sensitive A2780 cells unaffected. Consequently, Wnt signaling pathway appears as primary target of LMWH in sensitizing A2780cis cells for cisplatin toxicity. Considering the outstanding role of LMWH in clinical oncology, this finding appears as promising therapeutic option to hamper chemoresistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA