RESUMO
The episodic nature of locomotion is thought to be controlled by descending inputs from the brainstem. Most studies have largely attributed this control to initiating excitatory signals, but little is known about putative commands that may specifically determine locomotor offset. To link identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion.
Assuntos
Tronco Encefálico/fisiologia , Locomoção , Neurônios/citologia , Animais , Tronco Encefálico/citologia , Geradores de Padrão Central/fisiologia , Proteínas Luminescentes/análise , Camundongos , Vias Neurais , Medula Espinal/fisiologia , Proteína Vermelha FluorescenteRESUMO
Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.
Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The respiratory rhythm is generated by the preBötzinger complex in the medulla oblongata, and is modulated by neurons in the retrotrapezoid nucleus (RTN), which are essential for accelerating respiration in response to high CO2 Here we identify a LBX1 frameshift (LBX1FS ) mutation in patients with congenital central hypoventilation. The mutation alters the C-terminal but not the DNA-binding domain of LBX1 Mice with the analogous mutation recapitulate the breathing deficits found in humans. Furthermore, the mutation only interferes with a small subset of Lbx1 functions, and in particular with development of RTN neurons that coexpress Lbx1 and Phox2b. Genome-wide analyses in a cell culture model show that Lbx1FS and wild-type Lbx1 proteins are mostly bound to similar sites, but that Lbx1FS is unable to cooperate with Phox2b. Thus, our analyses on Lbx1FS (dys)function reveals an unusual pathomechanism; that is, a mutation that selectively interferes with the ability of Lbx1 to cooperate with Phox2b, and thus impairs the development of a small subpopulation of neurons essential for respiratory control.
Assuntos
Mutação da Fase de Leitura , Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Proteínas Musculares/fisiologia , Neurônios/patologia , Apneia do Sono Tipo Central/etiologia , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoventilação/etiologia , Hipoventilação/metabolismo , Hipoventilação/patologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Linhagem , Respiração , Apneia do Sono Tipo Central/metabolismo , Apneia do Sono Tipo Central/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do GenomaRESUMO
Cholecystokinin-expressing interneurons (CCKIs) are hypothesized to shape pyramidal cell-firing patterns and regulate network oscillations and related network state transitions. To directly probe their role in the CA1 region, we silenced their activity using optogenetic and chemogenetic tools in mice. Opto-tagged CCKIs revealed a heterogeneous population, and their optogenetic silencing triggered wide disinhibitory network changes affecting both pyramidal cells and other interneurons. CCKI silencing enhanced pyramidal cell burst firing and altered the temporal coding of place cells: theta phase precession was disrupted, whereas sequence reactivation was enhanced. Chemogenetic CCKI silencing did not alter the acquisition of spatial reference memories on the Morris water maze but enhanced the recall of contextual fear memories and enabled selective recall when similar environments were tested. This work suggests the key involvement of CCKIs in the control of place-cell temporal coding and the formation of contextual memories.
Assuntos
Colecistocinina , Hipocampo , Interneurônios , Optogenética , Células Piramidais , Animais , Masculino , Camundongos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Colecistocinina/metabolismo , Colecistocinina/genética , Medo/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Interneurônios/metabolismo , Aprendizagem/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Ritmo Teta/fisiologiaRESUMO
The hippocampal formation is one of the best studied brain regions for spatial and mnemonic representations. These representations have been reported to differ in their properties for individual hippocampal subregions. One approach that allows the detection of neuronal representations is immediate early gene imaging, which relies on the visualization of genomic responses of activated neuronal populations, so called engrams. This method permits the within-animal comparison of neuronal representations across different subregions. In this work, we have used compartmental analysis of temporal activity by fluorescence in-situ hybridisation (catFISH) of the immediate early gene zif268/erg1 to compare neuronal representations between subdivisions of the dentate gyrus and CA3 upon exploration of different contexts. Our findings give an account of subregion-specific ensemble sizes. We confirm previous results regarding disambiguation abilities in dentate gyrus and CA3 but in addition report novel findings: Although ensemble sizes in the lower blade of the dentate gyrus are significantly smaller than in the upper blade both blades are responsive to environmental change. Beyond this, we show significant differences in the representation of familiar and novel environments along the longitudinal axis of dorsal CA3 and most interestingly between CA3 regions of both hemispheres.
Assuntos
Giro Denteado , Hipocampo , Animais , Giro Denteado/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Memória , EncéfaloRESUMO
The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain's clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants.
Assuntos
Dopamina , Hipotálamo , Animais , Dopamina/fisiologia , Camundongos , Neurônios/fisiologia , Somatostatina , Núcleo Supraquiasmático/fisiologiaRESUMO
The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin (PV) or somatostatin (SOM), two markers of particular sub-classes of neocortical inhibitory neurons. Here, we find that both PV and SOM are expressed by physiologically distinct sub-classes. Furthermore, we describe multiple sources of inhibitory input to the LHb arising from both local PV-positive neurons, from PV-positive neurons in the medial dorsal thalamic nucleus, and from SOM-positive neurons in the ventral pallidum. These findings hence provide new insight into inhibitory control within the LHb, and highlight that this structure is more neuronally diverse than previously thought.