Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(9): 601, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864231

RESUMO

Concentrations, sources, and atmospheric processing of water-soluble ionic species associated with PM2.5 collected from 2015 to 2017 were studied in Jammu, an urban location in the North-Western Himalayan Region (NWHR). Being ecologically sensitive and sparsely studied for dynamics in PM2.5 and associated WSIS, the present study is important for developing robust air pollution abatement strategies for the air-shed of NWHR. Twenty-four hourly PM2.5 samples were collected on weekly basis at a receptor site and analyzed for WSIS using ion chromatography system. On annual basis, total sum of WSIS (ΣWSIS) contributed about 28.5% of PM2.5, where the contribution of sulfate-nitrate-ammonium, a proxy for secondary inorganic aerosols (SIA), was found to be 18.7% of PM2.5. The ΣWSIS and PM2.5 concentration showed a seasonal cycle with the maximum concentration during winters and the minimum in summers. Mass fraction of ΣWSIS in PM2.5 showed an anti-phase seasonal pattern indicating more source activity during summers. Season-wise, dominant WSIS constituting PM2.5 were NO3-, SO42-, NH4+, and K+ during winters; whereas summer was marked with dominant contributions from SO42-, NH4+, Ca2+, and K+. Seasonal variability exhibited among SIA constituents underscored the crucial role of air temperature and relative humidity regime. It was observed that nss-K+ + NH4+ were sufficient to neutralize most of the acidic species arising from precursor gases (NOx and SOx). Using principal component analysis, five major sources and processes, viz. (a) biomass burning activities, (b) secondary inorganic aerosol formation, (c) input from re-suspended dust, (d) transported dust, and (e) fertilizer residue, were identified for the emissions of PM2.5-associated WSIS over Jammu. In future studies, impacts of dry and/or wet deposition of aerosol-associated WSIS on the crop productivity in the region should be studied.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental/métodos , Nitratos/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Água/análise
2.
Environ Monit Assess ; 192(8): 517, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32666386

RESUMO

Particulate n-alkanes are major constituents of organic aerosols (OA). Being primary in origin, chemically stable and thus long-lived, n-alkanes retains source signatures and along with diagnostic parameters have extensively been used to identify source(s) of OA. Systematic, yearlong study was carried out in the Dhauladhar region of North-Western Himalaya (NWH) to investigate dynamics in the composition and concentration of aerosol-associated n-alkanes. PM10 samples were collected for 24 h, once every week, at an urban mid-altitude location (Dharamshala) and a rural low-altitude site (Pohara). Particulate bound n-alkanes were identified and quantified using thermal desorption gas chromatography mass spectrometry (TD-GCMS). Annual mean concentrations of total n-alkanes (TNA) were 211 ± 99 ng m-3 and 223 ± 83 ng m-3, while mass fractions of TNA in PM10 were 4410 ± 1759 ppm and 3622 ± 1243 ppm at Dharamshala and Pohara, respectively. At both sites, a slight dominance of odd carbon-numbered n-alkanes was noticed. The TNA concentration and associated diagnostic parameters indicated unique source profiles at rural and urban locations. Significant seasonal variations were attributed to the contrasting land-use settings and meteorological variations. Influence of petrogenic contributions at urban location and predominance of biogenic contributions at rural location were observed in spring and autumn seasons. Preliminary insights on sources of organic aerosols are presented here. The diagnostic parameters allowed apportionment of biogenic and petrogenic sources. Biogenic emissions from agricultural practices viz. harvesting and threshing were predominant in the rural settings, while tourism-led anthropogenic contributions significantly add to petrogenic contributions in urban environment of the NWH region.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis/análise , Alcanos/análise , Monitoramento Ambiental , Estações do Ano
3.
Chemosphere ; 263: 128298, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297240

RESUMO

A systematic yearlong study was carried out in Dhauladhar region of the North-Western Himalayas to investigate dynamics in the composition and concentration of particulate bound polycyclic aromatic hydrocarbons (PAHs) and their source(s) activity. PM10 samples were collected for 24 h, once every week during January 2015-January 2016, at an urban mid-altitude site (Dharamshala) and a rural low-altitude site (Pohara). PAHs were identified and quantified using high performance liquid chromatography coupled with UV-detector. Seasonal average concentration of total PAHs followed a pattern: Summer > Winter > Autumn > Spring in the region. Seasonal average values of molecular diagnostic ratios indicated significant contribution from non-traffic (biomass burning and coal combustion) sources also during winter and spring season, whereas, traffic emissions (gasoline and diesel) were the dominant source at both the locations throughout the year in the region. The Principal Component Analysis deciphered a) emissions from gasoline driven vehicles b) diesel engine exhaust emissions c) biomass/wood burning source d) coal combustion and e) waste incineration and burning of oil/tar as major sources of PAHs in the region. Annual mean values of total Benzo(a)Pyrene Equivalent were much higher than 1 ng.m-3 over both the locations indicating higher lung cancer risk to the people living in this part of the Himalayas.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Emissões de Veículos/análise
4.
Environ Sci Pollut Res Int ; 27(15): 18875-18892, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32207000

RESUMO

Fine particulate (PM2.5) bound non-polar organic compounds (NPOCs) and associated diagnostic parameters were studied at Jammu, an urban location in the foothills of North-Western Himalayan Region. PM2.5 was collected daily (24 h, once a week) over a year to assess monthly and seasonal variations in NPOC concentration and their source(s) activity. Samples were analyzed on thermal desorption-gas chromatography mass spectrometry to identify and quantify source-specific organic markers. Homologous series of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), isoprenoid hydrocarbons and nicotine were investigated to understand the sources of aerosols in the region. The annual mean concentration of PM2.5 during the sampling period was found higher than the permissible limit of India's National Ambient Air Quality Standards (NAAQS) and World Health Organisation (WHO) guidelines. The rise of concentration for PM2.5 and associated NPOCs in summer season was attributed to enhanced emission. The n-alkane-based diagnostic parameters indicated mixed contributions of NPOCs from anthropogenic sources like fossil fuel-related combustion with significant inputs from biogenic emission. Moreover, high influence of petrogenic contribution was observed in summer (monsoon) months. The quantifiable amounts of isoprenoid hydrocarbons further confirmed this observation. Total PAH concentration also followed an increasing trend from March to June, and June onwards a sharp decrease was observed. The higher concentration of environmental tobacco smoke marker nicotine in winter months was plausibly due to lower air temperature and conditions unfavourable to photo-degradation. A clear dominance of low molecular weight PAHs was noticed with rare presence of toxic PAHs in the ambient atmosphere of Jammu. PAH-based diagnostic parameters suggested substantial contribution from low temperature pyrolysis processes like biomass/crop-residue burning, wood and coal fire in the region. Specific wood burning markers further confirmed this observation.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA