Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
RNA Biol ; 20(1): 140-148, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042019

RESUMO

Micro RNAs (miRNAs) are short, non-coding RNAs with significant potential as diagnostic and prognostic biomarkers. However, a lack of reproducibility across studies has hindered their introduction into clinical settings. Inconsistencies between studies include a lack of consensus on the miRNAs associated with a specific disease and the direction of regulation. These differences may reflect the heterogenous nature of pathologies with multiple phenotypes, such as amyotrophic lateral sclerosis (ALS). It is also possible that discrepancies are due to different sampling, processing, and analysis protocols across labs. Using miRNA extracted from L1CAM immunoaffinity purified extracellular vesicles (neural-enriched extracellular vesicles or NEE), we thrice replicated an 8-miRNA fingerprint diagnostic of ALS, which includes the miRNA species and direction of regulation. We aimed to determine if the extra purification steps required to generate NEE created a unique extracellular vesicle (EV) fraction that might contribute to the robustness and replicability of our assay. We compared three fractions from control human plasma: 1) total heterogenous EVs (T), 2) L1CAM/neural enriched EVs (NEE), and 3) the remaining total-minus-NEE fraction (T-N). Each fraction was characterized for size, total protein content, and protein markers, then total RNA was extracted, and qPCR was run on 20 miRNAs. We report that the miRNA expression within NEE was different enough compared to T and T-N to justify the extra steps required to generate this fraction. We conclude that L1CAM immunocapture generates a unique fraction of EVs that consistently and robustly replicates a miRNA fingerprint which differentiates ALS patients from controls.


Assuntos
Esclerose Lateral Amiotrófica , Vesículas Extracelulares , MicroRNAs , Molécula L1 de Adesão de Célula Nervosa , Humanos , MicroRNAs/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Reprodutibilidade dos Testes , Vesículas Extracelulares/metabolismo
2.
J Nat Prod ; 85(1): 34-46, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35044783

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive cancer originating in the brain, with a median survival of 12 months. Most patients do not respond to or develop resistance to the only effective chemotherapeutic drug, temozolomide (TMZ), used to treat gliomas. Novel treatment methods are critically needed. Cyclotides are plant peptides that may be promising adjuvants to TMZ chemotherapy. They exhibit antitumor activity and chemosensitize cells to doxorubicin in breast cancer studies. During this research, we optimized cyclotide isolation techniques, and several cyclotides (CyO2, CyO13, kalata B1, and varv peptide A) exhibited dose-dependent cytotoxicity in MTT assays with IC50 values of 2.15-7.92 µM against human brain astrocytoma cells (U-87 MG) and human bone marrow derived neuroblastoma cells (SH-SY5Y). CyO2 and varv peptide A increased TMZ-induced cell death in U-87 MG cultures alone and when coexposed with CyO2 or varv peptide A plus TMZ. Phase contrast microscopy of glioblastoma cells exposed to cyclotides alone and coexposed to TMZ indicated shrunken, granular cells with blebbing, and the most pronounced effects were observed with coexposure treatments of cyclotides and TMZ. Cumulative results provide the proof-of-concept that cyclotides may enhance TMZ chemotherapy, and in vivo pharmacokinetic investigations of cyclotides are warranted with respect to GBM.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Ciclotídeos/farmacologia , Glioblastoma/patologia , Temozolomida/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Estudo de Prova de Conceito , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Amino Acids ; 49(8): 1427-1439, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28620737

RESUMO

Chronic dietary exposure to the cyanobacterial toxin ß-N-methylamino-L-alanine (BMAA) triggers neuropathology in non-human primates, providing support for the theory that BMAA causes a fatal neurodegenerative illness among the indigenous Chamorro people of Guam. However, since there are two stereoisomers of BMAA, it is important to know if both can occur in nature, and if so, what role they might play in disease causation. As a first step, we analysed both BMAA enantiomers in cyanobacteria, cycads, and in mammals orally dosed with L-BMAA, to determine if enantiomeric changes could occur in vivo. BMAA in cyanobacteria and cycads was found only as the L-enantiomer. However, while the L-enantiomer in mammals was little changed after digestion, we detected a small pool of D-BMAA in the liver (12.5%) of mice and in the blood plasma of vervets (3.6%). Chiral analysis of cerebrospinal fluid of vervets and hindbrain of mice showed that the free BMAA in the central nervous system was the D-enantiomer. In vitro toxicity investigations with D-BMAA showed toxicity, mediated through AMPA rather than NMDA receptors. These findings raise important considerations concerning the neurotoxicity of BMAA and its relationship to neurodegenerative disease.


Assuntos
Diamino Aminoácidos/toxicidade , Toxinas Bacterianas/toxicidade , Cianobactérias/efeitos dos fármacos , Cycadopsida/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Diamino Aminoácidos/análise , Animais , Toxinas Bacterianas/análise , Toxinas de Cianobactérias , Toxinas Marinhas/análise , Camundongos , Camundongos Endogâmicos C57BL , Microcistinas/análise , Estereoisomerismo
4.
Proc Biol Sci ; 283(1823)2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26791617

RESUMO

Neurofibrillary tangles (NFT) and ß-amyloid plaques are the neurological hallmarks of both Alzheimer's disease and an unusual paralytic illness suffered by Chamorro villagers on the Pacific island of Guam. Many Chamorros with the disease suffer dementia, and in some villages one-quarter of the adults perished from the disease. Like Alzheimer's, the causal factors of Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) are poorly understood. In replicated experiments, we found that chronic dietary exposure to a cyanobacterial toxin present in the traditional Chamorro diet, ß-N-methylamino-l-alanine (BMAA), triggers the formation of both NFT and ß-amyloid deposits similar in structure and density to those found in brain tissues of Chamorros who died with ALS/PDC. Vervets (Chlorocebus sabaeus) fed for 140 days with BMAA-dosed fruit developed NFT and sparse ß-amyloid deposits in the brain. Co-administration of the dietary amino acid l-serine with l-BMAA significantly reduced the density of NFT. These findings indicate that while chronic exposure to the environmental toxin BMAA can trigger neurodegeneration in vulnerable individuals, increasing the amount of l-serine in the diet can reduce the risk.


Assuntos
Diamino Aminoácidos/toxicidade , Peptídeos beta-Amiloides/metabolismo , Esclerose Lateral Amiotrófica/induzido quimicamente , Encéfalo/efeitos dos fármacos , Emaranhados Neurofibrilares/patologia , Diamino Aminoácidos/química , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Chlorocebus aethiops , Toxinas de Cianobactérias , Contaminação de Alimentos , Guam , Humanos , Raízes de Plantas/microbiologia , Grupos Populacionais , Serina/farmacologia
5.
Vet Res ; 46: 16, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25828258

RESUMO

While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins ß-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cianobactérias/fisiologia , Conteúdo Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/microbiologia , Diamino Aminoácidos/análise , Criação de Animais Domésticos , Animais , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Toxinas de Cianobactérias , DNA Bacteriano/genética , Inglaterra , França , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Doenças dos Cavalos/patologia , Cavalos , Hepatopatias/microbiologia , Hepatopatias/patologia , Hepatopatias/veterinária , Gado , Doença dos Neurônios Motores/microbiologia , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/veterinária , Neurotoxinas/análise , Plantas/microbiologia , Densidade Demográfica , RNA Ribossômico 16S/genética , Escócia
6.
Brain Commun ; 6(5): fcae268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280119

RESUMO

Blood-based diagnostic biomarkers for amyotrophic lateral sclerosis will improve patient outcomes and positively impact novel drug development. Critical to the development of such biomarkers is robust method validation, optimization and replication with adequate sample sizes and neurological disease comparative blood samples. We sought to test an amyotrophic lateral sclerosis biomarker derived from diverse samples to determine if it is disease specific. Extracellular vesicles were extracted from blood plasma obtained from individuals diagnosed with amyotrophic lateral sclerosis, primary lateral sclerosis, Parkinson's disease and healthy controls. Immunoaffinity purification was used to create a neural-enriched extracellular vesicle fraction. MicroRNAs were measured across sample cohorts using real-time polymerase chain reaction. A Kruskal-Wallis test was used to assess differences in plasma microRNAs followed by post hoc Mann-Whitney tests to compare disease groups. Diagnostic accuracy was determined using a machine learning algorithm and a logistic regression model. We identified an eight-microRNA diagnostic signature for blood samples from amyotrophic lateral sclerosis patients with high sensitivity and specificity and an area under the curve calculation of 98% with clear statistical separation from neurological controls. The eight identified microRNAs represent disease-related biological processes consistent with amyotrophic lateral sclerosis. The direction and magnitude of gene fold regulation are consistent across four separate patient cohorts with real-time polymerase chain reaction analyses conducted in two laboratories from diverse samples and sample collection procedures. We propose that this diagnostic signature could be an aid to neurologists to supplement current clinical metrics used to diagnose amyotrophic lateral sclerosis.

7.
Toxicon X ; 23: 100199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38974839

RESUMO

Biocrusts dominate the soil surface in deserts and are composed of diverse microbial communities that provide important ecosystem services. Cyanobacteria in biocrusts produce many secondary metabolites, including the neurotoxins BMAA, AEG, DAB, anatoxin-a(S) (guanitoxin), and the microcystin hepatotoxins, all known or suspected to cause disease or illness in humans and other animals. We examined cyanobacterial growth and prevalence of these toxins in biocrusts at millimeter-scales, under a desert-relevant illumination gradient. In contrast to previous work, we showed that hydration had an overall positive effect on growth and toxin accumulation, that nitrogen was not correlated with growth or toxin production, and that phosphorus enrichment negatively affected AEG and BMAA concentrations. Excess illumination positively correlated with AEG, and negatively correlated with all other toxins and growth. Basic pH negatively affected only the accumulation of BMAA. Anatoxin-a(S) (guanitoxin) was not correlated with any tested variables, while microcystins were not detected in any of the samples. Concerning toxin pools, AEG and BMAA were good predictors of the presence of one another. In a newly conceptualized scheme, we integrate aspects of biocrust growth and toxin pool accumulations with arid-relevant desertification drivers.

8.
Toxins (Basel) ; 15(11)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37999522

RESUMO

The Great Salt Lake in Utah is the largest saline lake in the Western hemisphere and one of the largest terminal lakes in the world. Situated at the eastern edge of the Great Basin, it is a remnant of the freshwater Lake Bonneville whose water level precipitously lowered about 12,000 years ago due to a natural break in Red Rock pass to the north. It contains a diverse assemblage of cyanobacteria which vary spatially dependent on salinity. In 1984, the waters of the Great Salt Lake occupied 8500 km2. Nearly four decades later, the waters occupy 2500 km2-a reduction in surface area of 71%. With predominantly westerly winds, there is a potential for the adjacent metropolitan residents to the east to be exposed to airborne cyanobacteria- and cyanotoxin-containing dust. During the summer and fall months of 2022, air and dried sediment samples were collected and assessed for the presence of BMAA which has been identified as a risk factor for ALS. Collection of air samples equivalent to a person breathing for 1 h resulted in BMAA and isomers being found in some air samples, along with their presence in exposed lakebed samples. There was no clear relationship between the presence of these toxins in airborne and adjacent lakebed samples, suggesting that airborne toxins may originate from diffuse rather than point sources. These findings confirm that continued low water levels in the Great Salt Lake may constitute an increasing health hazard for the 2.5 million inhabitants of communities along the Wasatch Front.


Assuntos
Cianobactérias , Lagos , Humanos , Lagos/microbiologia , Água , Utah , Toxinas de Cianobactérias
9.
Toxins (Basel) ; 15(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999501

RESUMO

Of the wide variety of toxic compounds produced by cyanobacteria, the neurotoxic amino acid ß-N-methylamino-l-alanine (BMAA) has attracted attention as a result of its association with chronic human neurodegenerative diseases such as ALS and Alzheimer's. Consequently, specific detection methods are required to assess the presence of BMAA and its isomers in environmental and clinical materials, including cyanobacteria and mollusks. Although the separation of isomers such as ß-amino-N-methylalanine (BAMA), N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) from BMAA has been demonstrated during routine analysis, a further compounding factor is the potential presence of enantiomers for some of these isomers. Current analytical methods for BMAA mostly do not discriminate between enantiomers, and the chiral configuration of BMAA in cyanobacteria is still largely unexplored. To understand the potential for the occurrence of D-BMAA in cyanobacteria, a chiral UPLC-MS/MS method was developed to separate BMAA enantiomers and isomers and to determine the enantiomeric configuration of endogenous free BMAA in a marine Lyngbya mat and two mussel reference materials. After extraction, purification and derivatization with N-(4-nitrophenoxycarbonyl)-l-phenylalanine 2-methoxyethyl ester ((S)-NIFE), both L- and D-BMAA were identified as free amino acids in cyanobacterial materials, whereas only L-BMAA was identified in mussel tissues. The finding of D-BMAA in biological environmental materials raises questions concerning the source and role of BMAA enantiomers in neurological disease.


Assuntos
Diamino Aminoácidos , Bivalves , Cianobactérias , Animais , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Diamino Aminoácidos/toxicidade , Aminoácidos/análise , Bivalves/química , Cianobactérias/metabolismo , Neurotoxinas/toxicidade
10.
Neurotox Res ; 41(5): 481-495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552461

RESUMO

ß-N-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria, which has been implicated in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). It is postulated that chronic exposure to BMAA can lead to formation of protein aggregates, oxidative stress, and/or excitotoxicity, which are mechanisms involved in the etiology of ALS. While specific genetic mutations are identified in some instances of ALS, it is likely that a combination of genetic and environmental factors, such as exposure to the neurotoxin BMAA, contributes to disease. We used a transgenic zebrafish with an ALS-associated mutation, compared with wild-type fish to explore the potential neurotoxic effects of BMAA through chronic long-term exposures. While our results revealed low concentrations of BMAA in the brains of exposed fish, we found no evidence of decreased swim performance or behavioral differences that might be reflective of neurodegenerative disease. Further research is needed to determine if chronic BMAA exposure in adult zebrafish is a suitable model to study neurodegenerative disease initiation and/or progression.


Assuntos
Diamino Aminoácidos , Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Peixe-Zebra , Doenças Neurodegenerativas/etiologia , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/complicações , Diamino Aminoácidos/toxicidade , Animais Geneticamente Modificados , Neurotoxinas/toxicidade , Superóxido Dismutase
11.
Toxicol Rep ; 10: 87-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691605

RESUMO

Introduction: Cyanobacterial blooms produce toxins that may become aerosolized, increasing health risks through inhalation exposures. Health related effects on the lower respiratory tract caused by these toxins are becoming better understood. However, nasal exposures to cyanotoxins remain understudied, especially for those with neurotoxic potential. Here, we present a case series study evaluating exposure to ß-N-methylamino-l-alanine (BMAA), a cyanobacterial toxin linked to neurodegenerative disease, in postmortem olfactory tissues of individuals with varying stages of Alzheimer's disease (AD). Methods: Olfactory bulb (Ob) tissues were collected during autopsies performed between 2014 and 2017 from six South Florida brain donors (ages 47-78) with residences less than 140 m from a freshwater body. A triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method validated according to peer AOAC International guidelines was used to detect BMAA and two BMAA isomers: 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Quantitative PCR was performed on the contralateral Ob to evaluate the relative expression of genes related to proinflammatory cytokines (IL-6 & IL-18), apoptotic pathways (CASP1 & BCL2), and mitochondrial stress (IRF1 & PINK1). Immunohistochemistry was also performed on the adjacent olfactory tract (Ot) to evaluate co-occurring neuropathology with BMAA tissue concentration. Results: BMAA was detected in the Ob of all cases at a median concentration of 30.4 ng/g (Range

12.
J Hazard Mater ; 441: 129953, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36116313

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has been presumed as an environmental cause of human neurodegenerative disorders, such as Alzheimer's disease. Marine diatoms Thalassiosira minima are demonstrated here to produce BMAA-containing proteins in axenic culture while the isomer diaminobutyric acid was bacterially produced. In the co-culture with Cyanobacterium aponinum, diatom growth was inhibited but the biosynthesis of BMAA-containing proteins was stimulated up to seven times higher than that of the control group by cell-cell interactions. The stimulation effect was not caused by the cyanobacterial filtrate. Nitrogen deprivation also doubled the BMAA content of T. minima cells. Transcriptome analysis of the diatom in mixed culture revealed that pathways involved in T. minima metabolism and cellular functions were mainly influenced, including KEGG pathways valine and leucine/isoleucine degradation, endocytosis, pantothenate and CoA biosynthesis, and SNARE interactions in vesicular transport. Based on the expression changes of genes related to protein biosynthesis, it was hypothesized that ubiquitination and autophagy suppression, and limited COPII vesicles transport accuracy and efficiency were responsible for biosynthesis of BMAA-containing proteins in T. minima. This study represents a first application of transcriptomics to investigate the biological processes associated with BMAA biosynthesis in diatoms.


Assuntos
Diamino Aminoácidos , Diatomáceas , Diamino Aminoácidos/análise , Coenzima A/metabolismo , Toxinas de Cianobactérias , Diatomáceas/genética , Diatomáceas/metabolismo , Humanos , Isoleucina/metabolismo , Leucina/metabolismo , Neurotoxinas/análise , Nitrogênio/metabolismo , Proteínas SNARE/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma , Valina/metabolismo
13.
Anal Chem ; 84(18): 7946-53, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22905767

RESUMO

ß-methylamino-l-alanine (BMAA) is a naturally occurring nonprotein amino acid originally discovered in cycad seeds and traditional foods of the Chamorro people of Guam. Recent research has implicated BMAA as a potential factor in neurodegenerative disease and described the production of BMAA in cyanobacteria, but conflicting results have complicated the interpretation of data. We hypothesized that the reactivity of BMAA with metal ions in the sample matrix and the formation of metal adducts in electrospray ionization mass spectrometry (MS) analysis confound results. Dilute solutions of TCA, MgCl(2), NaCl, CuCl(2), ZnCl(2) (0.01 M), or artificial ocean water (Instant Ocean, 3.5 g/L) reduced the signal attributable to the BMAA M + H(+) peak by 78-99.7%. The degree of adduct formation was significantly affected by MS settings such as induction voltage. A number of the detected ion peaks in BMAA standards were consistent with the formation of metal-BMAA complexes in addition to the adduct formation. A standard of Zn(BMAA)(2) was synthesized, and the effects of sample preparation, derivatization, column chromatography, pH, and interactions with serine were determined. Together, these data demonstrate that sample matrix, formation of adducts, and mass spectrometry settings complicate analysis of BMAA, that analysis by detection of the parent ion and daughter ion fragmentation patterns are highly susceptible to false negative findings, and that failure to detect BMAA cannot be considered proof of absence of the compound.


Assuntos
Diamino Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Complexos de Coordenação/química , Espectrometria de Massas por Ionização por Electrospray , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Concentração de Íons de Hidrogênio , Zinco/química
14.
Mar Drugs ; 10(2): 509-520, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22412816

RESUMO

Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA.


Assuntos
Diamino Aminoácidos/análise , Nadadeiras de Animais/química , Organismos Aquáticos/metabolismo , Toxinas Bacterianas/metabolismo , Cianobactérias/metabolismo , Neurotoxinas/metabolismo , Tubarões/crescimento & desenvolvimento , Animais , Oceano Atlântico , Toxinas de Cianobactérias , Espécies em Perigo de Extinção , Florida , Contaminação de Alimentos , Proliferação Nociva de Algas , Especificidade de Órgãos , Alimentos Marinhos/análise , Estações do Ano , Especificidade da Espécie
15.
PLoS One ; 17(4): e0267407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446894

RESUMO

We sought to identify a usable biomarker from blood samples to characterize early-stage Alzheimer's disease (AD) patients, in order to facilitate rapid diagnosis, early therapeutic intervention, and monitoring of clinical trials. We compared metabolites from blood plasma in early-stage Alzheimer's disease patients with blood plasma from healthy controls using two different analytical platforms: Amino Acid Analyzer and Tandem Mass-Spectrometer. Early-stage Alzheimer's patient blood samples were obtained during an FDA-approved Phase IIa clinical trial (Clinicaltrial.gov NCT03062449). Participants included 25 early-stage Alzheimer's patients and 25 healthy controls in the United States. We measured concentrations of 2-aminoethyl dihydrogen phosphate and taurine in blood plasma samples. We found that plasma concentrations of a phospholipid metabolite, 2-aminoethyl dihydrogen phosphate, normalized by taurine concentrations, distinguish blood samples of patients with early-stage AD. This possible new Alzheimer's biomarker may supplement clinical diagnosis for early detection of the disease.


Assuntos
Doença de Alzheimer , Biomarcadores , Doença de Alzheimer/sangue , Doença de Alzheimer/tratamento farmacológico , Biomarcadores/sangue , Ensaios Clínicos Fase II como Assunto , Humanos , Fosfatos , Plasma , Taurina/uso terapêutico
16.
Biomedicines ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36672612

RESUMO

Neurodegenerative diseases feature changes in cognition, and anxiety-like and autism-like behaviors, which are associated with epigenetic alterations such as DNA methylation and histone modifications. The amino acid L-serine has been shown to have beneficial effects on neurological symptoms. Here, we found that growth hormone-releasing hormone knockout (GHRH-KO) mice, a GH-deficiency mouse model characterized by extended lifespan and enhanced insulin sensitivity, showed a lower anxiety symptom and impairment of short-term object recognition memory and autism-like behaviors. Interestingly, L-serine administration exerted anxiolytic effects in mice and ameliorated the behavioral deficits in GHRH-KO. L-serine treatment upregulated histone epigenetic markers of H3K4me, H3K9ac, H3K14ac and H3K18ac in the hippocampus and H3K4me in the cerebral cortex in both GHRH-KO mice and wild type controls. L-serine-modulated epigenetic marker changes, in turn, were found to regulate mRNA expression of BDNF, grm3, foxp1, shank3, auts2 and marcksl1, which are involved in anxiety-, cognitive- and autism-like behaviors. Our study provides a novel insight into the beneficial effects of L-serine intervention on neuropsychological impairments.

17.
J Neurol Sci ; 442: 120396, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36081303

RESUMO

BACKGROUND AND OBJECTIVES: We examined miRNA biomarkers for ALS extracted from extracellular vesicles in blood samples using a large and diverse patient and control population. Different blood collection and storage protocols by different investigators could impact repeatability of miRNA analysis. We tested the hypotheses that miRNA extracted from extracellular vesicles using immunoaffinity purification techniques are robust and repeatable across investigators, laboratories and in a broad ALS population. METHODS: De-identified patient blood plasma samples obtained from the U.S. National ALS Biorepository were compared with plasma from non-ALS controls. Extracellular vesicles were extracted and isolated using L1CAM immunoaffinity purification. Total RNA was extracted, and miRNA quantified using qPCR following careful quality control measures. Gene fold expressions of eight miRNAs were compared using a Mann-Whitney two-tailed test. RESULTS: One hundred blinded, blood plasma samples were analyzed. Thirty-five men and 15 women with ALS were compared with controls consisting of 30 men and 20 women. None of the ALS patient cohort reported family members with ALS suggesting sporadic ALS. Five of the eight biomarkers previously published were found to significantly discriminate ALS patient samples from control samples. DISCUSSION: The methods used in this study provide a repeatable measure of miRNA biomarkers that statistically differentiate ALS patient samples from control samples. The broad inclusion criteria for both the ALS patient cohort and controls along with the collection of blood samples by different investigators suggest that these methods are robust and represent good candidates for further research and development aimed at clinical application.


Assuntos
Esclerose Lateral Amiotrófica , Vesículas Extracelulares , MicroRNAs , Molécula L1 de Adesão de Célula Nervosa , Masculino , Humanos , Feminino , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , MicroRNAs/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores
18.
Neurotox Res ; 39(1): 107-116, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32462275

RESUMO

The analysis of ß-N-methylamino-L-alanine (BMAA) has been validated according to AOAC international standards by a single laboratory (Glover et al. 2015). Using the same validated method, we add a second laboratory validation optimizing for different equipment. Given publicized concerns about standardizing methods across laboratories and recent reviews indicating superior results using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for the separation of BMAA and its isomers N-(2aminoethyl)glycine (AEG), and 2,4-diaminobuytric acid (DAB) (Bishop and Murch 2019), we add a second laboratory validation to this method demonstrating that the method is robust across laboratories using different equipment. Using the US Food and Drug Administration (FDA 2018) method for evaluating instrument parameters, we calculated a limit of detection (LOD) of 10 pg/ml for BMAA, AEG, and DAB and lower limits of quantification (LLOQ) of 37 pg/ml based on reagent blanks. In biological matrices, a higher LLOQ may be warranted for AEG and DAB. We demonstrate that the endogenous BMAA in mussel tissue can be lost by drying the hydrolyzed preparation and suggest sample preparation parameters be evaluated for robustness.


Assuntos
Diamino Aminoácidos/análise , Toxinas de Cianobactérias/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem
19.
Biol Methods Protoc ; 6(1): bpab015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423131

RESUMO

One consequence of the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is an interruption to the supply of laboratory consumables, particularly those used for RNA extraction. This category includes column-based RNA extraction kits designed to retain short RNA species (defined as having fewer than 200 nucleotides), from small sample volumes, e.g. exosomes or extracellular vesicles (EVs). Qiagen manufactures several kits for the extraction and enrichment of short RNA species, such as microRNA (miRNA), which contain silica-membrane columns called "RNeasy MinElute Spin Columns." These kits, which also contain buffers and collection tubes, range in price from USD380 to greater than USD1000 and have been subject to fulfillment delays. Scientists seeking to reduce single-use plastics and costs may wish to order the columns separately; however, Qiagen does not sell the RNeasy MinElute Spin Columns (in reasonable quantities) as an individual item. Thus, we sought an alternative product and found RNA Tini Spin columns from Enzymax LLC. We conducted a systematic comparison of the efficiency of RNA extraction for miRNA quantitative real-time PCR (qPCR) using the Qiagen RNeasy MinElute Spin Columns and Enzymax LLC RNA Tini Spin columns and the Qiagen total RNA extraction protocol that enriches for short RNA species. We compared the efficiency of extraction of five spike-in control miRNAs, six sample signal miRNAs, and nine low- to medium-abundance miRNAs by qPCR. The RNA was extracted from EV preparations purified from human plasma using CD81 immunoprecipitation. We report no statistically significant differences in extraction efficiencies between the two columns for any of the miRNAs examined. Therefore, we conclude that the Enzymax RNA Tini Spin columns are adequate substitutes for the Qiagen RNeasy MinElute Spin Columns for short RNA species enrichment and downstream qPCR from EVs in the miRNAs we examined.

20.
Neurotox Res ; 39(1): 42-48, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32557323

RESUMO

The fate and persistence of the neurotoxin ß-N-methylamino-L-alanine (BMAA) and its isomers N-(2aminoethyl)glycine (AEG) and 2,4-diaminobuytric acid (DAB) in soil profiles is poorly understood. In desert environments, these cyanotoxins are commonly found in both terrestrial and adjacent marine ecosystems; they accumulate in biocrusts and groundwater catchments, and have been previously shown to persist in soil as deep as 25 cm. To determine the depth that BMAA and its isomers can be found, samples were incrementally collected every 5 cm from bedrock to surface in triplicate soil cores in a biocrust field in the terrestrial desert of Qatar. Biocrust surface samples were also collected from each core priorly. Toxins were extracted from soil sub-samples, derivatized, and analyzed with UPLC-MS/MS. All toxins were detected in all soil cores at all depths. AEG and DAB were within a quantifiable concentration threshold; however, the low concentration of BMAA was considered below the threshold for quantification. This may have environmental health implications if these toxins are able to infiltrate and contaminate the bedrock aquifer, as well as the sand and gravel aquifers. Human and animal health may also be impacted through exposure to contaminated groundwater wells or through inhalation of aerosolized particles of soil, resuspended during construction or recreational activities.


Assuntos
Diamino Aminoácidos/análise , Toxinas de Cianobactérias/análise , Clima Desértico , Poluentes do Solo/análise , Catar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA