Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 108: 67-76, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309378

RESUMO

PURPOSE: The purpose of this study was to determine the utility of compressed sensing (CS) with deep learning reconstruction (DLR) for improving spatial resolution, image quality and focal liver lesion detection on high-resolution contrast-enhanced T1-weighted imaging (HR-CE-T1WI) obtained by CS with DLR as compared with conventional CE-T1WI with parallel imaging (PI). METHODS: Seventy-seven participants with focal liver lesions underwent conventional CE-T1WI with PI and HR-CE-T1WI, surgical resection, transarterial chemoembolization, and radiofrequency ablation, followed by histopathological or >2-year follow-up examinations in our hospital. Signal-to-noise ratios (SNRs) of liver, spleen and kidney were calculated for each patient, after which each SNR was compared by means of paired t-test. To compare focal lesion detection capabilities of the two methods, a 5-point visual scoring system was adopted for a per lesion basis analysis. Jackknife free-response receiver operating characteristic (JAFROC) analysis was then performed, while sensitivity and false positive rates (/data set) for consensus assessment of the two methods were also compared by using McNemar's test or the signed rank test. RESULTS: Each SNR of HR-CE-T1WI was significantly higher than that of conventional CE-T1WI with PI (p < 0.05). Sensitivities for consensus assessment showed that HR-CE-MRI had significantly higher sensitivity than conventional CE-T1WI with PI (p = 0.004). Moreover, there were significantly fewer FP/cases for HR-CE-T1WI than for conventional CE-T1WI with PI (p = 0.04). CONCLUSION: CS with DLR are useful for improving spatial resolution, image quality and focal liver lesion detection capability of Gd-EOB-DTPA enhanced 3D T1WI without any need for longer breath-holding time.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Meios de Contraste , Gadolínio , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
Diagnostics (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37568881

RESUMO

An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA