Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 81(17): 3637-3649.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478654

RESUMO

The off-target activity of the CRISPR-associated nuclease Cas9 is a potential concern for therapeutic genome editing applications. Although high-fidelity Cas9 variants have been engineered, they exhibit varying efficiencies and have residual off-target effects, limiting their applicability. Here, we show that CRISPR hybrid RNA-DNA (chRDNA) guides provide an effective approach to increase Cas9 specificity while preserving on-target editing activity. Across multiple genomic targets in primary human T cells, we show that 2'-deoxynucleotide (dnt) positioning affects guide activity and specificity in a target-dependent manner and that this can be used to engineer chRDNA guides with substantially reduced off-target effects. Crystal structures of DNA-bound Cas9-chRDNA complexes reveal distorted guide-target duplex geometry and allosteric modulation of Cas9 conformation. These structural effects increase specificity by perturbing DNA hybridization and modulating Cas9 activation kinetics to disfavor binding and cleavage of off-target substrates. Overall, these results pave the way for utilizing customized chRDNAs in clinical applications.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linfócitos T/metabolismo , Proteína 9 Associada à CRISPR/fisiologia , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/fisiologia , DNA/genética , Endonucleases/genética , Edição de Genes/métodos , Técnicas Genéticas , Genoma/genética , Genômica/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Conformação Molecular , RNA Guia de Cinetoplastídeos/genética , Relação Estrutura-Atividade , Linfócitos T/fisiologia
2.
Cytotherapy ; 25(7): 750-762, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086241

RESUMO

BACKGROUND AIMS: Therapeutic disruption of immune checkpoints has significantly advanced the armamentarium of approaches for treating cancer. The prominent role of the programmed death-1 (PD-1)/programmed death ligand-1 axis for downregulating T cell function offers a tractable strategy for enhancing the disease-modifying impact of CAR-T cell therapy. METHODS: To address checkpoint interference, primary human T cells were genome edited with a next-generation CRISPR-based platform (Cas9 chRDNA) by knockout of the PDCD1 gene encoding the PD-1 receptor. Site-specific insertion of a chimeric antigen receptor specific for CD19 into the T cell receptor alpha constant locus was implemented to drive cytotoxic activity. RESULTS: These allogeneic CAR-T cells (CB-010) promoted longer survival of mice in a well-established orthotopic tumor xenograft model of a B cell malignancy compared with identically engineered CAR-T cells without a PDCD1 knockout. The persistence kinetics of CB-010 cells in hematologic tissues versus CAR-T cells without PDCD1 disruption were similar, suggesting the robust initial debulking of established tumor xenografts was due to enhanced functional fitness. By single-cell RNA-Seq analyses, CB-010 cells, when compared with identically engineered CAR-T cells without a PDCD1 knockout, exhibited fewer Treg cells, lower exhaustion phenotypes and reduced dysfunction signatures and had higher activation, glycolytic and oxidative phosphorylation signatures. Further, an enhancement of mitochondrial metabolic fitness was observed, including increased respiratory capacity, a hallmark of less differentiated T cells. CONCLUSIONS: Genomic PD-1 checkpoint disruption in the context of allogeneic CAR-T cell therapy may provide a compelling option for treating B lymphoid malignancies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Linfócitos T , Imunoterapia Adotiva
4.
Nat Methods ; 14(6): 600-606, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459459

RESUMO

RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity.


Assuntos
Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
5.
Cancer Immunol Res ; 12(4): 462-477, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345397

RESUMO

Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic, allogeneic anti-B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor-derived T cells using a Cas12a CRISPR hybrid RNA-DNA (chRDNA) genome-editing technology platform. To address allograft rejection, CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition, T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition, CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell-mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M-HLA-E. Potent antitumor efficacy, when combined with an immune-cloaking armoring strategy to dampen allograft rejection, offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst, p. 385.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B/metabolismo , Antígenos HLA-E , Linfócitos T , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Antígenos de Histocompatibilidade Classe I/metabolismo , Aloenxertos/patologia
6.
Nat Biotechnol ; 37(12): 1471-1477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740839

RESUMO

Type I CRISPR-Cas systems are the most abundant adaptive immune systems in bacteria and archaea1,2. Target interference relies on a multi-subunit, RNA-guided complex called Cascade3,4, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation5-7. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex. Here, we fuse Cascade to the dimerization-dependent, non-specific FokI nuclease domain8-11 and achieve RNA-guided gene editing in multiple human cell lines with high specificity and efficiencies of up to ~50%. FokI-Cascade can be reconstituted via an optimized two-component expression system encoding the CRISPR-associated (Cas) proteins on a single polycistronic vector and the guide RNA (gRNA) on a separate plasmid. Expression of the full Cascade-Cas3 complex in human cells resulted in targeted deletions of up to ~200 kb in length. Our work demonstrates that highly abundant, previously untapped type I CRISPR-Cas systems can be harnessed for genome engineering applications in eukaryotic cells.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Escherichia coli , Genoma/genética , Células HEK293 , Humanos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA