Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7839): 705-711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299187

RESUMO

Recent studies have suggested that lymphatics help to restore heart function after cardiac injury1-6. Here we report that lymphatics promote cardiac growth, repair and cardioprotection in mice. We show that a lymphoangiocrine signal produced by lymphatic endothelial cells (LECs) controls the proliferation and survival of cardiomyocytes during heart development, improves neonatal cardiac regeneration and is cardioprotective after myocardial infarction. Embryos that lack LECs develop smaller hearts as a consequence of reduced cardiomyocyte proliferation and increased cardiomyocyte apoptosis. Culturing primary mouse cardiomyocytes in LEC-conditioned medium increases cardiomyocyte proliferation and survival, which indicates that LECs produce lymphoangiocrine signals that control cardiomyocyte homeostasis. Characterization of the LEC secretome identified the extracellular protein reelin (RELN) as a key component of this process. Moreover, we report that LEC-specific Reln-null mouse embryos develop smaller hearts, that RELN is required for efficient heart repair and function after neonatal myocardial infarction, and that cardiac delivery of RELN using collagen patches improves heart function in adult mice after myocardial infarction by a cardioprotective effect. These results highlight a lymphoangiocrine role of LECs during cardiac development and injury response, and identify RELN as an important mediator of this function.


Assuntos
Coração/embriologia , Sistema Linfático/citologia , Sistema Linfático/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração , Transdução de Sinais , Animais , Animais Recém-Nascidos , Apoptose , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Integrina beta1/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tamanho do Órgão , Organogênese , Proteína Reelina , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
2.
J Biol Chem ; 292(40): 16440-16462, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821620

RESUMO

Cardiac hypertrophy and associated heart fibrosis remain a major cause of death worldwide. Phytochemicals have gained attention as alternative therapeutics for managing cardiovascular diseases. These include the extract from the plant Terminalia arjuna, which is a popular cardioprotectant and may prevent or slow progression of pathological hypertrophy to heart failure. Here, we investigated the mode of action of a principal bioactive T. arjuna compound, arjunolic acid (AA), in ameliorating hemodynamic load-induced cardiac fibrosis and identified its intracellular target. Our data revealed that AA significantly represses collagen expression and improves cardiac function during hypertrophy. We found that AA binds to and stabilizes the ligand-binding domain of peroxisome proliferator-activated receptor α (PPARα) and increases its expression during cardiac hypertrophy. PPARα knockdown during AA treatment in hypertrophy samples, including angiotensin II-treated adult cardiac fibroblasts and renal artery-ligated rat heart, suggests that AA-driven cardioprotection primarily arises from PPARα agonism. Moreover, AA-induced PPARα up-regulation leads to repression of TGF-ß signaling, specifically by inhibiting TGF-ß-activated kinase1 (TAK1) phosphorylation. We observed that PPARα directly interacts with TAK1, predominantly via PPARα N-terminal transactivation domain (AF-1) thereby masking the TAK1 kinase domain. The AA-induced PPARα-bound TAK1 level thereby shows inverse correlation with the phosphorylation level of TAK1 and subsequent reduction in p38 MAPK and NF-κBp65 activation, ultimately culminating in amelioration of excess collagen synthesis in cardiac hypertrophy. In conclusion, our findings unravel the mechanism of AA action in regressing hypertrophy-associated cardiac fibrosis by assigning a role of AA as a PPARα agonist that inactivates non-canonical TGF-ß signaling.


Assuntos
Cardiomegalia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miocárdio/metabolismo , PPAR alfa/agonistas , Fator de Crescimento Transformador beta/metabolismo , Triterpenos/farmacologia , Animais , Cardiomegalia/patologia , Colágeno/biossíntese , Fibrose , MAP Quinase Quinase Quinases/metabolismo , Masculino , Miocárdio/patologia , Ratos , Ratos Wistar , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Mol Cell Biol ; 37(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28031326

RESUMO

Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima , Animais , Benzoquinonas/farmacologia , Cardiomegalia/patologia , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Lactamas Macrocíclicas/farmacologia , Masculino , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Ratos Wistar , Fator de Transcrição RelA/metabolismo , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Cell Signal ; 27(12): 2410-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26362850

RESUMO

Cardiac hypertrophy is accompanied by excessive collagen deposition in the heart. Despite painstaking research on this fatal disease, the precise role of molecular chaperones in myocardial fibrosis has not yet been elucidated. In this study, we have analyzed the mechanism by which Heat shock protein 90 (Hsp90)/Cell division cycle 37 (Cdc37) assembly modulates cardiac hypertrophy associated fibrosis. For the in vitro hypertrophy model, Angiotensin II (AngII) treated cultured adult cardiac fibroblasts were used, whereas the in vivo hypertrophy model was generated by renal artery ligation in adult male Wistar rats (Rattus norvegicus). Pretreatment with the Hsp90 inhibitor or the blocking of Hsp90-Cdc37 interactions during pressure overload hypertrophy resulted in ubiquitin-mediated proteasomal degradation of TGFß receptor-II (TßR-II) leading to termination of TGFß mediated signaling. In both cases significant reduction in collagen synthesis was observed revealing the Hsp90/Cdc37 complex as an integral profibrotic component of TGFß signaling during cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas de Choque Térmico HSP90/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Masculino , Estabilidade Proteica , Proteólise , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Ativação Transcricional , Ubiquitinação
6.
PLoS One ; 9(8): e104711, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116170

RESUMO

A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation.


Assuntos
Cardiomegalia/patologia , Coração/fisiopatologia , Miocárdio/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Acetofenonas/farmacologia , Adaptação Fisiológica , Animais , Apoptose/fisiologia , Benzopiranos/farmacologia , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Musculares/metabolismo , Fosforilação , Condicionamento Físico Animal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA