Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 40(4): 530-538, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29925919

RESUMO

We have reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can act as an oncogenic transcriptional co-activator to modulate gene expression, promoting breast cancer development. Pyruvate kinase muscle isozyme M2 (PKM2), encoded by PKM gene, has emerged as a key oncoprotein in breast cancer. Yet, the regulatory mechanism of PKM2 is still unexplored. Here, we report that HBXIP can upregulate PKM2 to accelerate proliferation of estrogen receptor positive (ER+) breast cancer. Immunohistochemistry analysis using breast cancer tissue microarray uncovered a positive association between the expression of HBXIP and PKM2. We also discovered that PKM2 expression was positively related with HBXIP expression in clinical breast cancer patients by real-time PCR assay. Interestingly, in ER+ breast cancer cells, HBXIP was capable of upregulating PKM2 expression at mRNA and protein levels in a dose-dependent manner, as well as increasing the activity of PKM promoter. Mechanistically, HBXIP could stimulate PKM promoter through binding to the -779/-579 promoter region involving co-activation of E2F transcription factor 1 (E2F1). In function, cell viability, EdU, colony formation, and xenograft tumor growth assays showed that HBXIP contributed to accelerating cell proliferation through PKM2 in ER+ breast cancer. Collectively, we conclude that HBXIP induces PKM2 through transcription factor E2F1 to facilitate ER+ breast cancer cell proliferation. We provide new evidence for the mechanism of transcription regulation of PKM2 in promotion of breast cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Estrogênio/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA