RESUMO
Microneurographic recordings of the human cervical vagus nerve have revealed the presence of multi-unit neural activity with measurable cardiac rhythmicity. This suggests that the physiology of vagal neurones with cardiovascular regulatory function can be studied using this method. Here, the activity of cardiac rhythmic single units was discriminated from human cervical vagus nerve recordings using template-based waveform matching. The activity of 44 cardiac rhythmic neurones (22 with myelinated axons and 22 with unmyelinated axons) was isolated. By consideration of each unit's firing pattern with respect to the cardiac and respiratory cycles, the functional identification of each unit was attempted. Of note is the observation of seven cardiac rhythmic neurones with myelinated axons whose activity was recruited or enhanced by slow, deep breathing, was maximal during the nadir of respiratory sinus arrhythmia, and showed an expiratory peak. This is characteristic of cardioinhibitory efferent neurones, which are responsible for respiratory sinus arrhythmia. The remaining 15 cardiac rhythmic neurones with myelinated axons were categorised as cardiopulmonary receptors or arterial baroreceptors based on the position of their peak in firing with respect to the R-wave of the cardiac cycle. This latter method is not viable for neurones with unmyelinated axons due to their slow and unknown conduction velocities. With the exception of three neurones whose expiratory modulation implicates them as cardiac-projecting efferent neurones, this population is likely dominated by arterial baroreceptors. In conclusion, the activity of single units with cardiovascular function has been discriminated within the human cervical vagus, enabling their systematic study. KEY POINTS: Recordings of the electrical activity of the vagus nerve have recently been made at the level of the neck in humans. Examination of the gross activity of this nerve reveals subpopulations of neurones whose activity fluctuates in time with the heart's beat, suggesting that the neurones that monitor or modify cardiac function can be studied using this method. Here, the activity of individual cardiac rhythmic neurones was isolated from human vagus nerve recordings using template-based spike sorting. The relationship between this activity and the cardiac and respiratory cycles was used as a means of classifying each neurone. Neuronal firing patterns that are consistent with that of neurones that modify cardiac function, including heart-slowing 'cardioinhibitory' neurones, as well as neurones that inform the brain of cardiovascular status were observed. This approach enables, for the first time, the systematic study of the function of these neurones in humans in both health and disease.
RESUMO
We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.
Assuntos
Apneia , Circulação Cerebrovascular , Hipercapnia , Estresse Nitrosativo , Estresse Oxidativo , Humanos , Masculino , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Apneia/metabolismo , Apneia/fisiopatologia , Feminino , Adulto , Metabolismo Energético , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Encéfalo/metabolismo , Óxido Nítrico/metabolismoRESUMO
Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.
Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças Cardiovasculares , Medula Cervical , Traumatismos da Medula Espinal , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Artéria Carótida Primitiva , Artérias Carótidas , Artéria Cerebral Média , Traumatismos da Medula Espinal/complicaçõesRESUMO
People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were â¼65% lower and â¼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.
Assuntos
Micropartículas Derivadas de Células/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Traumatismos da Medula Espinal/sangue , Adulto , Estudos de Casos e Controles , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Fosforilação , Traumatismos da Medula Espinal/patologia , Ativador de Plasminogênio Tecidual/metabolismoRESUMO
NEW FINDINGS: What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT: Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. FIO2 , 0.10) and hyperoxia (i.e. FIO2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.
Assuntos
Circulação Cerebrovascular , Mergulho/fisiologia , Hiperóxia/fisiopatologia , Hipóxia/fisiopatologia , Acoplamento Neurovascular , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , VasodilataçãoRESUMO
The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41- and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.
Assuntos
Vasos Sanguíneos/fisiopatologia , Suspensão da Respiração , Mergulho/efeitos adversos , Micropartículas Derivadas de Células/metabolismo , Humanos , Fatores de Tempo , VasodilataçãoRESUMO
Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.
Assuntos
Selectina E/sangue , Endotélio Vascular/fisiopatologia , Resposta ao Choque Térmico , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Artérias/diagnóstico por imagem , Biomarcadores/sangue , Vértebras Cervicais/lesões , Endotélio Vascular/diagnóstico por imagem , Feminino , Hemorreologia , Humanos , Hipertermia Induzida , Masculino , Microvasos/diagnóstico por imagem , Pessoa de Meia-IdadeRESUMO
Static apnea provides a unique model that combines transient hypertension, hypercapnia, and severe hypoxemia. With apnea durations exceeding 5 min, the purpose of the present study was to determine how that affects cerebral free-radical formation and the corresponding implications for brain structure and function. Measurements were obtained before and following a maximal apnea in 14 divers with transcerebral exchange kinetics, measured as the product of global cerebral blood flow (duplex ultrasound) and radial arterial to internal jugular venous concentration differences ( a-vD). Apnea increased the systemic (arterial) and, to a greater extent, the regional (jugular venous) concentration of the ascorbate free radical, resulting in a shift from net cerebral uptake to output ( P < 0.05). Peroxidation (lipid hydroperoxides, LDL oxidation), NO bioactivity, and S100ß were correspondingly enhanced ( P < 0.05), the latter interpreted as minor and not a pathologic disruption of the blood-brain barrier. However, those changes were insufficient to cause neuronal-parenchymal damage confirmed by the lack of change in the a-vD of neuron-specific enolase and human myelin basic protein ( P > 0.05). Collectively, these observations suggest that increased cerebral oxidative stress following prolonged apnea in trained divers may reflect a functional physiologic response, rather than a purely maladaptive phenomenon.-Bain, A. R., Ainslie, P. N., Hoiland, R. L., Barak, O. F., Drvis, I., Stembridge, M., MacLeod, D. M., McEneny, J., Stacey, B. S., Tuaillon, E., Marchi, N., De Maudave, A. F., Dujic, Z., MacLeod, D. B., Bailey, D. M. Competitive apnea and its effect on the human brain: focus on the redox regulation of blood-brain barrier permeability and neuronal-parenchymal integrity.
Assuntos
Apneia/metabolismo , Barreira Hematoencefálica/metabolismo , Estresse Oxidativo , Adulto , Apneia/sangue , Permeabilidade Capilar , Circulação Cerebrovascular , Feminino , Radicais Livres/metabolismo , Humanos , Peroxidação de Lipídeos , Masculino , Proteína Básica da Mielina/metabolismo , Fosfopiruvato Hidratase/metabolismoRESUMO
STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.
Assuntos
Circulação Cerebrovascular/fisiologia , Vértebras Cervicais/diagnóstico por imagem , Hipertermia Induzida/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Vértebras Cervicais/lesões , Feminino , Humanos , Hipertermia Induzida/tendências , Masculino , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/terapiaRESUMO
The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) is crucial to prevent stroke, the incidence of which is three- to fourfold elevated after spinal cord injury (SCI). Disruption of descending sympathetic pathways within the spinal cord due to cervical SCI may result in impaired cerebrovascular buffering. Only linear analyses of cerebrovascular buffering of BP, such as transfer function, have been used in SCI research. This approach does not account for inherent nonlinearity and nonstationarity components of cerebrovascular regulation, often depends on perturbations of BP to increase the statistical power, and does not account for the influence of arterial CO2 tension. Here, we used a nonlinear and nonstationary analysis approach termed wavelet decomposition analysis (WDA), which recently identified novel sympathetic influences on cerebrovascular buffering of BP occurring in the ultra-low-frequency range (ULF; 0.02-0.03Hz). WDA does not require BP perturbations and can account for influences of CO2 tension. Supine resting beat-by-beat BP (Finometer), middle cerebral artery blood velocity (transcranial Doppler), and end-tidal CO2 tension were recorded in cervical SCI ( n = 14) and uninjured ( n = 16) individuals. WDA revealed that cerebral blood flow more closely follows changes in BP in the ULF range ( P = 0.0021, Cohen's d = 0.89), which may be interpreted as an impairment in cerebrovascular buffering of BP. This persisted after accounting for CO2. Transfer function metrics were not different in the ULF range, but phase was reduced at 0.07-0.2 Hz ( P = 0.03, Cohen's d = 0.31). Sympathetically mediated cerebrovascular buffering of BP is impaired after SCI, and WDA is a powerful strategy for evaluating cerebrovascular buffering in clinical populations.
Assuntos
Pressão Arterial , Artéria Braquial/fisiopatologia , Circulação Cerebrovascular , Artéria Cerebral Média/fisiopatologia , Modelos Cardiovasculares , Traumatismos da Medula Espinal/fisiopatologia , Ultrassonografia Doppler Transcraniana/métodos , Análise de Ondaletas , Adaptação Fisiológica , Adulto , Velocidade do Fluxo Sanguíneo , Feminino , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/inervação , Valor Preditivo dos Testes , Traumatismos da Medula Espinal/diagnóstico , Sistema Nervoso Simpático/fisiopatologiaRESUMO
We examined if the diving-induced vascular changes in the peripheral and cerebral circulation could be prevented by oral antioxidant supplementation. Fourteen divers performed a single scuba dive to eighteen meter sea water for 47 min. Twelve of the divers participated in a follow-up study involving breathing 60% of oxygen at ambient pressure for 47 min. Before both studies, participants ingested vitamin C (2 g/day) or a placebo capsule for 6 days. After a 2-wk washout, the study was repeated with the different condition. Endothelium-dependent vasodilator function of the brachial artery was assessed pre- and postintervention using the flow-mediated dilation (FMD) technique. Transcranial Doppler ultrasound was used to measure intracranial blood velocities pre- and 90 min postintervention. FMD was reduced by â¼32.8% and â¼21.2% postdive in the placebo and vitamin C trial and posthyperoxic condition in the placebo trial by â¼28.2% ( P < 0.05). This reduction in FMD was attenuated by â¼10% following vitamin C supplementation in the hyperoxic study ( P > 0.05). Elevations in intracranial blood velocities 30 min after surfacing from diving were reduced in the vitamin C study compared with the placebo trial ( P < 0.05). O2 breathing had no postintervention effects on intracranial velocities ( P > 0.05). Prophylactic ingestion of vitamin C effectively abrogated peripheral vascular dysfunction following exposure to 60% O2 but did not abolish the postdive decrease in FMD. Transient elevations of intracranial velocities postdive were reduced by vitamin C. These findings highlight the differential influence of vitamin C on peripheral and cerebral circulations following scuba diving, which are only partly mediated via hyperoxia.
Assuntos
Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Artéria Braquial/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Mergulho , Hiperóxia/fisiopatologia , Vasodilatação/efeitos dos fármacos , Administração Oral , Adulto , Velocidade do Fluxo Sanguíneo , Artéria Braquial/diagnóstico por imagem , Artéria Braquial/fisiopatologia , Croácia , Método Duplo-Cego , Ecocardiografia , Humanos , Hiperóxia/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Ultrassonografia Doppler de Pulso , Ultrassonografia Doppler Transcraniana/métodosRESUMO
Molecular oxygen (O2) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O2 delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress. Nevertheless, with various degrees of effectiveness, and not without consequences, supplemental oxygen is used clinically in an attempt to correct tissue hypoxia (e.g., brain ischemia, traumatic brain injury, carbon monoxide poisoning, etc.) and chronic hypoxemia (e.g., severe COPD, etc.) and to help with wound healing, necrosis, or reperfusion injuries (e.g., compromised grafts). Hyperoxia has also been used liberally by athletes in a belief that it offers performance-enhancing benefits; such benefits also extend to hypoxemic patients both at rest and during rehabilitation. This review aims to provide a comprehensive overview of the effects of hyperoxia in humans from the "bench to bedside." The first section will focus on the basic physiological principles of partial pressure of arterial O2, [Formula: see text], and barometric pressure and how these changes lead to variation in regional O2 delivery. This review provides an overview of the evidence for and against the use of hyperoxia as an aid to enhance physical performance. The final section addresses pathophysiological concepts, clinical studies, and implications for therapy. The potential of O2 toxicity and future research directions are also considered.
Assuntos
Desempenho Atlético , Hemodinâmica , Hiperóxia/fisiopatologia , Pulmão/fisiopatologia , Oxigênio/administração & dosagem , Ventilação Pulmonar , Administração por Inalação , Animais , Biomarcadores/sangue , Tolerância ao Exercício , Humanos , Hiperóxia/sangue , Oxigênio/efeitos adversos , Oxigênio/sangue , Pressão Parcial , Fluxo Sanguíneo Regional , Medição de Risco , VasoconstriçãoRESUMO
NEW FINDINGS: What is the central question of this study? How does oxygen therapy influence cerebral blood flow, cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients? What is the main finding and its importance? Oxygen therapy improves cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients. This improvement in cerebral oxygen delivery and neurovascular function might provide a physiological link between oxygen therapy and a reduced risk of cerebrovascular disease (e.g. stroke, mild cognitive impairment and dementia) in chronic obstructive pulmonary disease. ABSTRACT: We investigated the role of hypoxaemia in cerebral blood flow (CBF), oxygen delivery (CDO2 ) and neurovascular coupling (coupling of CBF to neural activity; NVC) in hypoxaemic chronic obstructive pulmonary disease (COPD) patients (n = 14). Resting CBF (duplex ultrasound), peripheral oxyhaemoglobin saturation (SpO2; pulse-oximetry) and NVC (transcranial Doppler) were assessed before and after a 20 min wash-in of supplemental oxygen (â¼3 l min-1 ). The peripheral oxyhaemoglobin saturation increased from 91.0 ± 3.3 to 97.4 ± 3.0% (P < 0.01), whereas CBF was unaltered (593.0 ± 162.8 versus 590.1 ± 138.5 ml min-1 ; P = 0.91) with supplemental O2 . In contrast, both CDO2 (98.1 ± 25.7 versus 108.7 ± 28.4 ml dl-1 ; P = 0.02) and NVC were improved. Specifically, the posterior cerebral artery cerebrovascular conductance was increased to a greater extent after O2 normalization (+40%, from 20.4 ± 9.9 to 28.0 ± 10.4% increase in conductance; P = 0.04), whereas the posterior cerebral artery cerebrovascular resistance decreased to a greater extent during O2 normalization (+22%, from -16.7 ± 7.3 to -21.4 ± 6.6% decrease in resistance; P = 0.04). The cerebral vasculature of COPD patients appears insensitive to oxygen, because CBF was unaltered in response to O2 supplementation leading to improved CDO2 . In patients, the improvements in CDO2 and neurovascular function with supplemental O2 may underlie the cognitive benefits associated with O2 therapy.
Assuntos
Circulação Cerebrovascular/fisiologia , Hipóxia/terapia , Oxigênio/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/terapia , Idoso , Feminino , Humanos , Hipóxia/complicações , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oximetria , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Resultado do TratamentoRESUMO
This study investigated the influence of ventilation on sympathetic action potential (AP) discharge patterns during varying levels of high chemoreflex stress. In seven trained breath-hold divers (age 33 ± 12 yr), we measured muscle sympathetic nerve activity (MSNA) at baseline, during preparatory rebreathing (RBR), and during 1) functional residual capacity apnea (FRCApnea) and 2) continued RBR. Data from RBR were analyzed at matched (i.e., to FRCApnea) hemoglobin saturation (HbSat) levels (RBRMatched) or more severe levels (RBREnd). A third protocol compared alternating periods (30 s) of FRC and RBR (FRC-RBRALT). Subjects continued each protocol until 85% volitional tolerance. AP patterns in MSNA (i.e., providing the true neural content of each sympathetic burst) were studied using wavelet-based methodology. First, for similar levels of chemoreflex stress (both HbSat: 71 ± 6%; P = NS), RBRMatched was associated with reduced AP frequency and APs per burst compared with FRCApnea (both P < 0.001). When APs were binned according to peak-to-peak amplitude (i.e., into clusters), total AP clusters increased during FRCApnea (+10 ± 2; P < 0.001) but not during RBRMatched (+1 ± 2; P = NS). Second, despite more severe chemoreflex stress during RBREnd (HbSat: 56 ± 13 vs. 71 ± 6%; P < 0.001), RBREnd was associated with a restrained increase in the APs per burst (FRCApnea: +18 ± 7; RBREnd: +11 ± 5) and total AP clusters (FRCApnea: +10 ± 2; RBREnd: +6 ± 4) (both P < 0.01). During FRC-RBRALT, all periods of FRC elicited sympathetic AP recruitment (all P < 0.001), whereas all periods of RBR were associated with complete withdrawal of AP recruitment (all P = NS). Presently, we demonstrate that ventilation per se restrains and/or inhibits sympathetic axonal recruitment during high, and even extreme, chemoreflex stress.NEW & NOTEWORTHY The current study demonstrates that the sympathetic neural recruitment patterns observed during chemoreflex activation induced by rebreathing or apnea are restrained and/or inhibited by the act of ventilation per se, despite similar, or even greater, levels of severe chemoreflex stress. Therefore, ventilation modulates not only the timing of sympathetic bursts but also the within-burst axonal recruitment normally observed during progressive chemoreflex stress.
Assuntos
Potenciais de Ação , Apneia/fisiopatologia , Ventilação Pulmonar , Recrutamento Neurofisiológico , Reflexo , Estresse Fisiológico , Sistema Nervoso Simpático/fisiologia , Adulto , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
NEW FINDINGS: What is the central question of this study? Does the reduction in cardiac output observed during extreme voluntary apnoea, secondary to high lung volume, result in a reduction in cerebral blood flow, perfusion pressure and oxygen delivery in a group of elite free divers? What is the main finding and its importance? High lung volumes reduce cardiac output and ventricular filling during extreme apnoea, but changes in cerebral blood flow are observed only transiently during the early stages of apnoea. This reveals that whilst cardiac output is important in regulating cerebral haemodynamics, the role of mean arterial pressure in restoring cerebral perfusion pressure is of greater significance to the regulation of cerebral blood flow. We investigated the role of lung volume-induced changes in cardiac output (QÌ) on cerebrovascular regulation during prolonged apnoea. Fifteen elite apnoea divers (one female; 185 ± 7 cm, 82 ± 12 kg, 29 ± 7 years old) attended the laboratory on two separate occasions and completed maximal breath-holds at total lung capacity (TLC) and functional residual capacity (FRC) to elicit disparate cardiovascular responses. Mean arterial pressure (MAP), internal jugular venous pressure and arterial blood gases were measured via cannulation. Global cerebral blood flow was quantified by ultrasound and cardiac output was quantified by via photoplethysmography. At FRC, stroke volume and QÌ did not change from baseline (P > 0.05). In contrast, during the TLC trial stroke volume and QÌ were decreased until 80 and 40% of apnoea, respectively (P < 0.05). During the TLC trial, global cerebral blood flow was significantly lower at 20%, but subsequently increased so that cerebral oxygen delivery was comparable to that during the FRC trial. Internal jugular venous pressure was significantly higher throughout the TLC trial in comparison to FRC. The MAP increased progressively in both trials but to a greater extent at TLC, resulting in a comparable cerebral perfusion pressure between trials by the end of apnoea. In summary, although lung volume has a profound effect on QÌ during prolonged breath-holding, these changes do not translate to the cerebrovasculature owing to the greater sensitivity of cerebral blood flow to arterial blood gases and MAP; regulatory mechanisms that facilitate the maintenance of cerebral oxygen delivery.
Assuntos
Apneia/fisiopatologia , Débito Cardíaco/fisiologia , Circulação Cerebrovascular/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Adulto , Apneia/metabolismo , Pressão Arterial/fisiologia , Gasometria/métodos , Suspensão da Respiração , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Mergulho/fisiologia , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Oxigênio/metabolismo , Volume Sistólico/fisiologiaRESUMO
KEY POINTS: The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3 min 36 s to 7 min 26 s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by â¼29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea. ABSTRACT: Prolonged apnoea in humans is reflected in progressive hypoxaemia and hypercapnia. In the present study, we explore the cerebral metabolic responses under extreme hypoxia and hypercapnia associated with prolonged apnoea. We hypothesized that the cerebral metabolic rate for oxygen (CMRO2 ) will be reduced near the termination of apnoea, attributed in part to the hypercapnia. Fourteen elite apnoea-divers performed a maximal apnoea (range 3 min 36 s to 7 min 26 s) under dry laboratory conditions. In a subset study with the same divers, the impact of hypercapnia on cerebral metabolism was determined using varying levels of hypercapnic breathing, against the background of similar hypoxia. In both studies, the CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-internal jugular venous oxygen content difference. Non-oxidative cerebral metabolism was calculated from the ratio of oxygen and carbohydrate (lactate and glucose) metabolism. The CMRO2 was reduced by â¼29% (P < 0.01, Cohen's d = 1.18) near the termination of apnoea compared to baseline, although non-oxidative metabolism remained unaltered. In the subset study, in similar backgrounds of hypoxia (arterial O2 tension: â¼38.4 mmHg), severe hypercapnia (arterial CO2 tension: â¼58.7 mmHg), but not mild-hypercapnia (arterial CO2 tension: â¼46.3 mmHg), depressed the CMRO2 (â¼17%, P = 0.04, Cohen's d = 0.87). Similarly to the apnoea, there was no change in the non-oxidative metabolism. These data indicate that hypercapnia can partly explain the reduction in CMRO2 near the apnoea breakpoint. This hypercapnic-induced oxygen conservation may protect the brain against severe hypoxaemia associated with prolonged apnoea.
Assuntos
Apneia/fisiopatologia , Encéfalo/fisiologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Consumo de Oxigênio , Adulto , Apneia/sangue , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Gasometria , Circulação Cerebrovascular , Epinefrina/sangue , Feminino , Frequência Cardíaca , Humanos , Hipercapnia/sangue , Hipóxia/sangue , Norepinefrina/sangue , Pressão Venosa , Adulto JovemRESUMO
What is the central question of this study? Do individuals with chronic obstructive pulmonary disease have blood flow through intrapulmonary arteriovenous anastomoses at rest or during exercise? What is the main finding and its importance? Individuals with chronic obstructive pulmonary disease have a greater prevalence of blood flow through intrapulmonary arteriovenous anastomoses at rest than age-matched control subjects. Given that the intrapulmonary arteriovenous anastomoses are large enough to permit venous emboli to pass into the arterial circulation, patients with chronic obstructive pulmonary disease and an elevated risk of thrombus formation may be at risk of intrapulmonary arteriovenous anastomosis-facilitated embolic injury (e.g. stroke or transient ischaemic attack). The pulmonary capillaries prevent stroke by filtering venous emboli from the circulation. Intrapulmonary arteriovenous anastomoses are large-diameter (≥50 µm) vascular connections in the lung that may compromise the integrity of the pulmonary capillary filter and have recently been linked to cryptogenic stroke and transient ischaemic attack. Prothrombotic populations, such as individuals with chronic obstructive pulmonary disease (COPD), may be at increased risk of stroke and transient ischaemic attack facilitated by intrapulmonary arteriovenous anastomoses, but the prevalence and degree of blood flow through intrapulmonary arteriovenous anastomoses in this population has not been fully examined and compared with age-matched healthy control subjects. We used saline contrast echocardiography to assess blood flow through intrapulmonary arteriovenous anastomoses at rest (n = 29 COPD and 19 control subjects) and during exercise (n = 10 COPD and 10 control subjects) in subjects with COPD and age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses was detected in 23% of subjects with COPD at rest and was significantly higher compared with age-matched healthy control subjects. Blood flow through intrapulmonary arteriovenous anastomoses at rest was reduced or eliminated in subjects with COPD after breathing hyperoxic gas. Sixty per cent of subjects with COPD who did not have blood flow through the intrapulmonary arteriovenous anastomoses at rest had blood flow through them during exercise. The combination of blood flow through intrapulmonary arteriovenous anastomoses and potential for thrombus formation in individuals with COPD may permit venous emboli to pass into the arterial circulation and cause stroke and transient ischaemic attack. Breathing supplemental oxygen may reduce this risk in COPD. The link between blood flow through intrapulmonary arteriovenous anastomoses, stroke and transient ischaemic attack is worthy of future investigation in COPD and other populations.
Assuntos
Anastomose Arteriovenosa/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/metabolismo , Artérias/fisiopatologia , Anastomose Arteriovenosa/metabolismo , Estudos de Casos e Controles , Ecocardiografia/métodos , Exercício Físico/fisiologia , Teste de Esforço/métodos , Feminino , Humanos , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Circulação Pulmonar/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Respiração , Descanso/fisiologia , Acidente Vascular Cerebral/metabolismoRESUMO
Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (â¼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (â¼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation.
Assuntos
Ácido Ascórbico/administração & dosagem , Micropartículas Derivadas de Células/efeitos dos fármacos , Doença da Descompressão/prevenção & controle , Suplementos Nutricionais , Mergulho/efeitos adversos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Estudos Cross-Over , Doença da Descompressão/sangue , Doença da Descompressão/etiologia , Doença da Descompressão/imunologia , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/etiologia , Humanos , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sindecana-1/sangue , Fatores de Tempo , Resultado do Tratamento , Tirosina/análogos & derivados , Tirosina/sangue , UltrassonografiaRESUMO
The purpose of this study was to determine the impact of peripheral chemoreflex inhibition with low-dose dopamine on maximal apnea time, and the related hemodynamic and cerebrovascular responses in elite apnea divers. In a randomized order, participants performed a maximal apnea while receiving either intravenous 2 µg·kg(-1)·min(-1) dopamine or volume-matched saline (placebo). The chemoreflex and hemodynamic response to dopamine was also assessed during hypoxia [arterial O2 tension, (PaO2 ) â¼35 mmHg] and mild hypercapnia [arterial CO2 tension (PaCO2 ) â¼46 mmHg] that mimicked the latter parts of apnea. Outcome measures included apnea duration, arterial blood gases (radial), heart rate (HR, ECG), mean arterial pressure (MAP, intra-arterial), middle (MCAv) and posterior (PCAv) cerebral artery blood velocity (transcranial ultrasound), internal carotid (ICA) and vertebral (VA) artery blood flow (ultrasound), and the chemoreflex responses. Although dopamine depressed the ventilatory response by 27 ± 41% (vs. placebo; P = 0.01), the maximal apnea duration was increased by only 5 ± 8% (P = 0.02). The PaCO2 and PaO2 at apnea breakpoint were similar (P > 0.05). When compared with placebo, dopamine increased HR and decreased MAP during both apnea and chemoreflex test (P all <0.05). At rest, dopamine compared with placebo dilated the ICA (3.0 ± 4.1%, P = 0.05) and VA (6.6 ± 5.0%, P < 0.01). During apnea and chemoreflex test, conductance of the cerebral vessels (ICA, VA, MCAv, PCAv) was increased with dopamine; however, flow (ICA and VA) was similar. At least in elite apnea divers, the small increase in apnea time and similar PaO2 at breakpoint (â¼31 mmHg) suggest the apnea breakpoint is more related to PaO2 , rather than peripheral chemoreflex drive to breathe.
Assuntos
Apneia/fisiopatologia , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Dopamina/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Oxigênio/sangue , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Acoplamento Neurovascular/efeitos dos fármacos , Ventilação Pulmonar/efeitos dos fármacos , Índice de Gravidade de DoençaRESUMO
Background: Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events. Objectives: The aim of this study was to determine whether a subset of vascular-related miRNAs is differentially expressed in EMVs isolated from adults with SCI. Methods: We assessed eight adults with tetraplegia (7 male/1 female; age: 46±4 years; time since injury: 26±5 years) and eight uninjured (6 male/2 female; age: 39±3 years). Circulating EMVs were isolated, enumerated, and collected from plasma by flow cytometry. The expression of vascular-related miRNAs in EMVs was assessed by RT-PCR. Results: Circulating EMV levels were significantly higher (~130%) in adults with SCI compared with uninjured adults. The expression profile of miRNAs in EMVs from adults with SCI were significantly different than uninjured adults and were pathologic in nature. Expression of miR-126, miR-132, and miR-Let-7a were lower (~100-150%; p < .05), whereas miR-30a, miR-145, miR-155, and miR-216 were higher (~125-450%; p < .05) in EMVs from adults with SCI. Conclusion: This study is the first examination of EMV miRNA cargo in adults with SCI. The cargo signature of vascular-related miRNAs studied reflects a pathogenic EMV phenotype prone to induce inflammation, atherosclerosis, and vascular dysfunction. EMVs and their miRNA cargo represent a novel biomarker of vascular risk and a potential target for intervention to alleviate vascular-related disease after SCI.