RESUMO
Identification, and subsequent quantification of quantum correlations, is critical for understanding, controlling, and engineering quantum devices and processes. We derive and implement a general method to quantify various forms of quantum correlations using solely the experimental intensity moments up to the fourth order. This is possible as these moments allow for an exact determination of the global and marginal impurities of two-beam Gaussian fields. This leads to the determination of steering, tight lower and upper bounds for the negativity, and the Kullback-Leibler divergence used as a quantifier of state nonseparability. The principal squeezing variances are determined as well using the intensity moments. The approach is demonstrated on the experimental twin beams with increasing intensity and the squeezed super-Gaussian beams composed of photon pairs. Our method is readily applicable to multibeam Gaussian fields to characterize their quantum correlations.
RESUMO
We report an experimental implementation of tripartite controlled quantum teleportation on quantum optical devices. The protocol is performed through bi- and tripartite entangled channels of discrete variables and qubits encoded in the polarization of individual photons. The experimental results demonstrate successful controlled quantum teleportation with a fidelity around 83%, well above the classical limit. By realizing the controlled quantum teleportation through a biseparable state, we show that tripartite entanglement is not a necessary resource for controlled quantum teleportation, and the controller's capability to allow or prohibit the teleportation cannot be considered to be a manifestation of tripartite entanglement. These results open new possibilities for further application of controlled quantum teleportation by lowering the teleportation channel's requirements.
RESUMO
This research analyzes the adverse impact of white noise on collective quantum measurements and argues that such noise poses a significant obstacle for the otherwise straightforward deployment of collective measurements in quantum communications. Our findings then suggests addressing this issue by correlating outcomes of these measurements with quantum state purity. To test the concept, a support vector machine is employed to boost the performance of several collective entanglement witnesses by incorporating state purity into the classification task of distinguishing entangled states from separable ones. Furthermore, the application of machine learning allows to optimize specificity of entanglement detection given a target value of sensitivity. A response operating characteristic curve is reconstructed based on this optimization and the area under curve calculated to assess the efficacy of the proposed model. Finally, we test the presented approach on an experimental dataset of Werner states.
RESUMO
Quantum entanglement and non-locality are two special aspects of quantum correlations. The relationship between multipartite entanglement and non-locality is at the root of the foundations of quantum mechanics but there is still no general quantitative theory. In order to address this issue we analyze the relationship between tripartite non-locality and tripartite entanglement measure, called the three-tangle. We describe the states which give the extremal quantum values of a Bell-type inequality for a given value of the tripartite entanglement. Moreover, we show that such extremal states can be reached if one introduced an appropriate order induced by the three-π entanglement measure. Finally, we derive an analytical expression relating tripartite entanglement to the maximal violations of the Bell-type inequalities.
RESUMO
In a recent paper, Tilma, Everitt et al. derived a generalized Wigner function that can characterize both the discrete and continuous variable states, i.e., hybrid states. As such, one can expect that the negativity of the generalized Wigner function applied to the hybrid states can reveal their nonclassicality, in analogy with the well-known Wigner function defined for the continuous variable states. In this work, we demonstrate that, indeed, the negativity volume of the generalized Wigner function of the hybrid bipartite states can be used as an entanglement witness for such states, provided that it exceeds a certain critical value. In particular, we study hybrid bipartite qubit-bosonic states and provide a qubit-Schrödinger cat state as an example. Since the detection of the generalized Wigner function of hybrid bipartite states in phase space can be experimentally simpler than the tomographic reconstruction of the corresponding density matrix, our results, therefore, present a convenient tool in the entanglement identification of such states.
RESUMO
We analyze the controlled teleportation protocol through three-qubit mixed states. In particular, we investigate the relation between the faithfulness of the controlled teleportation scheme and entanglement. While our knowledge concerning controlled teleportation and entanglement in pure states is well established, for mixed states it is considerably much harder task and very little has been done in this field. Here, we present counterintuitive results that provide a new light on controlled teleportation protocol. It is shown that even mixed biseparable states are useful for this protocol along with genuine entangled three-qubit states.
RESUMO
BACKGROUND: Improving the sieving characteristics of dialysis membranes enhances the clearance of low-molecular-weight (LMW) proteins and may have an impact on outcome in patients receiving haemodialysis. To approach this goal, a novel polyelectrolyte additive process was applied to a polyethersulphone (PES) membrane. METHODS: Polyelectrolyte-modified PES was characterized in vitro by measuring complement activation and sieving coefficients of cytochrome c and serum albumin. In a prospective, randomized, cross-over study, instantaneous plasma water clearances and reduction rates of LMW proteins [beta(2)-microglobulin (b2m), cystatin c, myoglobin, retinol binding protein] were determined in eight patients receiving dialysis treatment with PES in comparison with polysulphone (PSU). Biocompatibility was assessed by determination of transient leucopenia, plasma levels of complement C5a, thrombin-antithrombin III (TAT), myeloperoxidase (MPO) and elastase (ELT). RESULTS: PES showed a steeper sieving profile and lower complement activation in vitro compared with PSU. Instantaneous clearance (69 +/- 8 vs. 58 +/- 3 ml/min; P < 0.001) and reduction rate (72.3 +/- 1 5% vs 66.2 +/- 6.1%; P < 0.001) of b2m were significantly higher with PES as compared with PSU. With higher molecular weight of proteins, differences in the solute removal between PES and PSU further increased, whereas albumin loss remained low (PES, 0.53 +/- 0.17 vs PSU, <0.22 g/dialysis). MPO, ELT and TAT did not differ between the two membranes. In contrast, leucopenia was less pronounced and C5a generation was significantly lower during dialysis with PES. CONCLUSIONS: Polyelectrolyte modification of PES results in a higher LMW protein removal and in optimized biocompatibility. Whether these findings translate into better outcome of patients receiving haemodialysis requires further studies.