Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Water Sci Technol ; 81(8): 1700-1714, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32644962

RESUMO

Plant-wide modelling can be considered an appropriate approach to represent the current complexity in water resource recovery facilities, reproducing all known phenomena in the different process units. Nonetheless, novel processes and new treatment schemes are still being developed and need to be fully incorporated in these models. This work presents a short chronological overview of some of the most relevant plant-wide models for wastewater treatment, as well as the authors' experience in plant-wide modelling using the general model BNRM (Biological Nutrient Removal Model), illustrating the key role of general models (also known as supermodels) in the field of wastewater treatment, both for engineering and research.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Modelos Biológicos , Nutrientes , Esgotos
2.
J Environ Manage ; 245: 76-85, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150912

RESUMO

The operation of an outdoor membrane photobioreactor plant which treated the effluent of an anaerobic membrane bioreactor was optimised. Biomass retention times of 4.5, 6, and 9 days were tested. At a biomass retention time of 4.5 days, maximum nitrogen recovery rate:light irradiance ratios, photosynthetic efficiencies and carbon biofixations of 51.7 ±â€¯14.3 mg N·mol-1, 4.4 ±â€¯1.6% and 0.50 ±â€¯0.05 kg CO2·m3influent, respectively, were attained. Minimum membrane fouling rates were achieved when operating at the shortest biomass retention time because of the lower solid concentration and the negligible amount of cyanobacteria and protozoa. Hydraulic retention times of 3.5, 2, and 1.5 days were tested at the optimum biomass retention times of 4.5 days under non-nutrient limited conditions, showing no significant differences in the nutrient recovery rates, photosynthetic efficiencies and membrane fouling rates. However, nitrogen recovery rate:light irradiance ratios and photosynthetic efficiency significantly decreased when hydraulic retention time was further shortened to 1 day, probably due to a rise in the substrate turbidity which reduced the light availability in the culture. Optimal carbon biofixations and theoretical energy recoveries from the biomass were obtained at hydraulic retention time of 3.5 days, which accounted for 0.55 ±â€¯0.05 kg CO2·m-3influent and 0.443 ±â€¯0.103 kWh·m-3influent, respectively.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Reatores Biológicos , Membranas Artificiais , Nitrogênio , Esgotos
3.
J Environ Manage ; 217: 788-796, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660704

RESUMO

Notorious changes in microbial communities were observed during and after the joint treatment of wastewater with Food Waste (FW) in an Anaerobic Membrane Bioreactor (AnMBR) plant. The microbial population was analysed by high-throughput sequencing of the 16S rRNA gene and dominance of Chloroflexi, Firmicutes, Synergistetes and Proteobacteria phyla was found. The relative abundance of these potential hydrolytic phyla increased as a higher fraction of FW was jointly treated. Moreover, whereas Specific Methanogenic Activity (SMA) rose from 10 to 51 mL CH4 g-1 VS, Methanosarcinales order increased from 34.0% over 80.0% of total Archaea, being Methanosaeta the dominant genus. The effect of FW over AnMBR biomass was observed during the whole experience, as methane production rose from 49.2 to 144.5 L CH4 · kg-1 influent COD. Furthermore, biomethanization potential was increased over 82% after the experience. AnMBR technology allows the established microbial community to remain in the bioreactor even after the addition of FW, improving the anaerobic digestion of urban wastewater.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Anaerobiose , Biocombustíveis , Aditivos Alimentares , Metano , RNA Ribossômico 16S , Águas Residuárias
4.
Water Sci Technol ; 77(11-12): 2566-2577, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29944122

RESUMO

The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 µmol s-1 m-2) and phosphorus concentrations (around 6 and 15 mgP L-1). Four green algae - Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas- and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L-1, a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 ± 15.8% and 96.1 ± 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 µmol s-1 m-2 of light intensity and 6.02 mgP L-1 of phosphorus concentration, reaching about 674 ± 86 mg L-1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species.


Assuntos
Biotecnologia/métodos , Clorófitas/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Fósforo/metabolismo , Águas Residuárias/química , Biomassa , Clorófitas/metabolismo , Luz , Microalgas/metabolismo , Nitrogênio/metabolismo , Fotobiorreatores , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
5.
Water Sci Technol ; 78(1-2): 195-206, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101802

RESUMO

As microalgae have the ability to simultaneously remove nutrients from wastewater streams while producing valuable biomass, microalgae-based wastewater treatment is a win-win strategy. Although recent advances have been made in this field in lab conditions, the transition to outdoor conditions on an industrial scale must be further investigated. In this work an outdoor pilot-scale membrane photobioreactor plant was operated for tertiary sewage treatment. The effects of different parameters on microalgae performance were studied including: temperature, light irradiance (solar and artificial irradiance), hydraulic retention time (HRT), biomass retention time (BRT), air sparging system and influent nutrient concentration. In addition the competition between microalgae and ammonium oxidising bacteria for ammonium was also evaluated. Maximum nitrogen and phosphorus removal rates of 12.5 ± 4.2 mgN·L-1·d-1 and 1.5 ± 0.4 mgP·L-1·d-1, respectively, were achieved at a BRT of 4.5 days and HRT of 2.5 days, while a maximum biomass productivity of 78 ± 13 mgVSS·L-1·d-1 (VSS: volatile suspended solids) was reached. While the results obtained so far are promising, they need to be improved to make the transition to industrial scale operations feasible.


Assuntos
Fotobiorreatores , Águas Residuárias/química , Purificação da Água , Desenho de Equipamento , Microalgas/metabolismo , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/isolamento & purificação , Fósforo/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos
6.
Water Sci Technol ; 78(9): 1925-1936, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30566096

RESUMO

This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD·L-1, 14.9 mg N·L-1 and 0.5 mg P·L-1, respectively. Harvested solar energy and carbon dioxide biofixation in the form of microalgae biomass allowed remarkable methane yields (399 STP L CH4·kg-1 CODinf) to be achieved, equivalent to theoretical electricity productions of around 0.52 kWh per m3 of wastewater entering the WRRF. Furthermore, 26.6% of total nitrogen influent load was recovered as ammonium sulphate, while nitrogen and phosphorus were recovered in the biosolids produced (650 ± 77 mg N·L-1 and 121.0 ± 7.2 mg P·L-1).


Assuntos
Reatores Biológicos , Conservação dos Recursos Hídricos/métodos , Esgotos , Purificação da Água/métodos , Recursos Hídricos , Nitrogênio , Sulfatos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
7.
J Environ Manage ; 196: 340-346, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28324850

RESUMO

Interest in phosphorus (P) recovery and reuse has increased in recent years as supplies of P are declining. After use, most of the P remains in wastewater, making Wastewater Treatment Plants (WWTPs) a vital part of P recycling. In this work, a new sludge management operation was studied by modeling in order to recover P in the form of struvite and minimize operating problems due to uncontrolled P precipitation in WWTPs. During the study, intensive analytical campaigns were carried out on the water and sludge lines. The results identified the anaerobic digester as a "hot spot" of uncontrolled P precipitation (9.5 gP/kg sludge) and highlighted possible operating problems due to the accumulation of precipitates. A new sludge line management strategy was simulated therefore using DESASS© software, consisting of the elutriation of the mixed sludge in the mixing chamber, to reduce uncontrolled P precipitation and to obtain a P-rich stream (primary thickener supernatant) to be used in a crystallization process. The key operating parameters were found to be: the elutriation flow from the mixing chamber to the primary thickener, the digestion flow and the sludge blanket height of the primary thickener, with optimized values between 70 and 80 m3/d, 90-100 m3/d and 1.4-1.5 m, respectively. Under these operating conditions, the preliminary results showed that P concentration in the primary thickener overflow significantly increased (from 38 to 100 mg PO4-P/L), which shows that this stream is suitable for use in a subsequent crystallization reactor to recover P in the form of struvite.


Assuntos
Esgotos , Estruvita , Águas Residuárias , Compostos de Magnésio , Fosfatos , Fósforo
8.
Water Sci Technol ; 67(7): 1481-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23552235

RESUMO

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


Assuntos
Modelos Teóricos , Purificação da Água , Reatores Biológicos , Precipitação Química , Simulação por Computador , Cinética , Nitritos/química
9.
Environ Technol ; 33(7-9): 1005-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720427

RESUMO

In this paper, two practical case studies for upgrading two wastewater treatment plants (WWTPs) using the general model BNRM 1 (Biological Nutrient Removal Model No. 1) are presented. In the first case study, the Tarragona WWTP was upgraded by reducing the phosphorus load to the anaerobic digester in order to minimize the precipitation problems. Phosphorus load reduction was accomplished by mixing the primary sludge and the secondary sludge and by elutriating the mixed sludge. In the second case study, the Alcantarilla WWTP, the nutrient removal was enhanced by maintaining a relatively low dissolved oxygen concentration in Stage A to maintain the acidogenic bacteria activity. The VFA produced in Stage A favour the denitrification process and biological phosphorus removal in Stage B. These case studies demonstrate the benefits of using the general model BNRMI to simulate settling processes and biological processes related to both anaerobic and aerobic bacteria in the same process unit.


Assuntos
Modelos Teóricos , Esgotos , Purificação da Água , Aerobiose , Anaerobiose , Compostos Orgânicos/isolamento & purificação , Fosfatos/isolamento & purificação , Engenharia Sanitária
10.
Water Res ; 169: 115238, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707179

RESUMO

A membrane photobioreactor (MPBR) plant was operated continuously for 3 years to evaluate the separate effects of different factors, including: biomass and hydraulic retention times (BRT, HRT), light path (Lp), nitrification rate (NOxR), nutrient loading rates (NLR, PLR) and others. The overall effect of all these parameters which influence MPBR performance had not previously been assessed. The multivariate projection approach chosen for this study provided a good description of the collected data and facilitated their visualisation and interpretation. Forty variables used to control and assess MPBR performance were evaluated during three years of continuous outdoor operation by means of principal component analysis (PCA) and partial least squares (PLS) analysis. The PCA identified the photobioreactor (PBR) light path as the factor with the largest influence on data variability. Other important factors were: nitrogen and phosphorus recovery rates (NRR, PRR), biomass productivity (BP), optical density of 680 nm (OD680), ammonium and phosphorus effluent concentration (NH4, P), HRT, BRT, air flow rate (Fair) and nitrogen and phosphorus loading rates (NLR and PLR). The MPBR performance could be adequately estimated by a PLS model based on all the recorded variables, but this estimation worsened appreciably when only the controlled variables (Lp, Fair, HRT and BRT) were used as predictors, which underlines the importance of the non-controlled variables on MPBR performance. The microalgae cultivation process could thus only be partially controlled by the design and operating variables. A high nitrification rate was found to be inadvisable, since it showed an inverse correlation with NRR. In this respect, temperature and microalgae biomass concentration appeared to be the main factors to mitigate nitrifying bacteria activity.


Assuntos
Microalgas , Fotobiorreatores , Anaerobiose , Biomassa , Membranas Artificiais , Águas Residuárias
11.
Water Res ; 175: 115647, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32146206

RESUMO

As phosphorus is a non-renewable resource mainly used to produce fertilizers and helps to provide food all over the world, the proper management of its reserves is a global concern since it is expected to become scarcer in the near future. In this work we assessed two different sludge line configurations aiming for P extraction and recovery before anaerobic digestion and compared them with the classical configuration. This study has been performed by simulation with the model BNRM2 integrated in the software package DESASS 7.1. Configuration 1 was based on the production of a PO4-enriched stream from sludge via elutriation in the primary thickeners, while Configuration 2 was based on the WASSTRIP® process and its PO4-enriched stream was mechanically obtained with dynamic thickeners. In both alternatives recovery was enhanced by promoting poly-phosphate (poly-P) extraction under anaerobic conditions, for which both configurations were fully evaluated in a full-scale WWTP. Both were also optimized to maximize phosphorus extraction. Their costs and life cycles were also analysed. The novelty of this research lies in the lack of literature about the integral evaluation of pre-anaerobic digestion P recovery from wastewaters. This study included a holistic approach and an optimization study of both alternatives plus their economic and environmental aspects. In Configuration 1, the PO4-P load in the recovery stream reached 43.1% of the total influent P load and reduced uncontrolled P-precipitation in the sludge line up to 52.9%. In Configuration 2, extraction was 48.2% of the influent P load and it reduced precipitation by up to 60.0%. Despite Configuration 1's lower phosphorus recovery efficiency, it had a 23.0% lower life cycle cost and a 14.2% lower global warming impact per hm3 of treated influent than Configuration 2. Configuration 1 also reduced the TAEC by 17.6% and global warming impact by 2.0% less than Configuration 0.


Assuntos
Fósforo , Esgotos , Fertilizantes , Eliminação de Resíduos Líquidos , Águas Residuárias
12.
Environ Technol ; 41(3): 267-276, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29963975

RESUMO

Conventional treatments for nutrient removal in wastewater are shifting to Anaerobic Membrane Bioreactors, which produce a high-quality effluent with minimum sludge production. The effluent resulting contains high nitrogen and phosphorus load that can be eliminated by microalgae culture. The aim of this study is to evaluate the ammonium and phosphorus removal rate of different microalgae species in the effluent of an anaerobic treatment. For that, 4 different microalgae species have been tested (Chlamydomonas reinhardtii, Scenedesmus obliquus, Chlorella vulgaris and Monoraphidium braunii) in batch monoculture and mixed conditions. Results indicate that all species are able to eliminate both P and N in the medium with high removal rates. However, a slight interspecies competition may boost these removal rates and productivity values ensuring, the success of the process.


Assuntos
Chlorella vulgaris , Microalgas , Anaerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
Water Res ; 172: 115499, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978839

RESUMO

Outdoor microalgae cultivation systems treating anaerobic membrane bioreactor (AnMBR) effluents usually present ammonium oxidising bacteria (AOB) competition with microalgae for ammonium uptake, which can cause nitrite accumulation. In literature, nitrite effects over microalgae have shown controversial results. The present study evaluates the nitrite inhibition role in a microalgae-nitrifying bacteria culture. For this purpose, pilot- and lab-scale assays were carried out. During the continuous outdoor operation of the membrane photobioreactor (MPBR) plant, biomass retention time (BRT) of 2 d favoured AOB activity, which caused nitrite accumulation. This nitrite was confirmed to inhibit microalgae performance. Specifically, continuous 5-d lab-scale assays showed a reduction in the nitrogen recovery efficiency by 32, 42 and 80% when nitrite concentration in the culture accounted for 5, 10 and 20 mg N·L-1, respectively. On the contrary, short 30-min exposure to nitrite showed no significant differences in the photosynthetic activity of microalgae under nitrite concentrations of 0, 5, 10 and 20 mg N·L-1. On the other hand, when the MPBR plant was operated at 2.5-d BRT, the nitrite concentration was reduced to negligible values due to increasing activity of microalgae and nitrite oxidising bacteria (NOB). This allowed obtaining maximum MPBR performance; i.e. nitrogen recovery rate (NRR) and biomass productivity of 19.7 ± 3.3 mg N·L-1·d-1 and 139 ± 35 mg VSS·L-1·d-1, respectively; while nitrification rate (NOxR) reached the lowest value (13.5 ± 3.4 mg N·L-1·d-1). Long BRT of 4.5 d favoured NOB growth, avoiding nitrite inhibition. However, it implied a decrease in microalgae growth and the accumulation of nitrate in the MPBR effluent. Hence, it seems that optimum BRT has to be within the range 2-4.5 d in order to favour microalgae growth with respect to AOB and NOB.


Assuntos
Microalgas , Bactérias , Reatores Biológicos , Nitrificação , Nitritos , Oxirredução , Fotobiorreatores , Águas Residuárias
14.
Water Res ; 172: 115518, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31991292

RESUMO

Microalgae cultivation has been receiving increasing interest in wastewater remediation due to their ability to assimilate nutrients present in wastewater streams. In this respect, cultivating microalgae in membrane photobioreactors (MPBRs) allows decoupling the solid retention time (SRT) from the hydraulic retention time (HRT), which enables to increase the nutrient load to the photobioreactors (PBRs) while avoiding the wash out of the microalgae biomass. The reduction of the PBR light path from 25 to 10 cm increased the nitrogen and phosphorus recovery rates, microalgae biomass productivity and photosynthetic efficiency by 150, 103, 194 and 67%, respectively.The areal biomass productivity (aBP) also increased when the light path was reduced, reflecting the better use of light in the 10-cm MPBR plant. The capital and operating operational expenditures (CAPEX and OPEX) of the 10-cm MPBR plant were also reduced by 27 and 49%, respectively. Discharge limits were met when the 10-cm MPBR plant was operated at SRTs of 3-4.5 d and HRTs of 1.25-1.5 d. At these SRT/HRT ranges, the process could be operated without a high fouling propensity with gross permeate flux (J20) of 15 LMH and specific gas demand (SGDp) between 16 and 20 Nm3air·m-3permeate, which highlights the potential of membrane filtration in MPBRs. When the continuous operation of the MPBR plant was evaluated, an optical density of 680 nm (OD680) and soluble chemical oxygen demand (sCOD) were found to be good indicators of microalgae cell and algal organic matter (AOM) concentrations, while dissolved oxygen appeared to be directly related to MPBR performance. Nitrite and nitrate (NOx) concentration and the soluble chemical oxygen demand:volatile suspended solids ratio (sCOD:VSS) were used as indicators of nitrifying bacteria activity and the stress on the culture, respectively. These parameters were inversely related to nitrogen recovery rates and biomass productivity and could thus help to prevent possible culture deterioration.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Fósforo , Águas Residuárias
15.
Sci Total Environ ; 672: 88-96, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954828

RESUMO

Practical recovery of a non-renewable nutrient, such as phosphorus (P), is essential to support modern agriculture in the near future. The high P content of urine, makes it an attractive source for practicing the recovery of this crucial nutrient. This paper presents the experimental results at pilot-plant scale of struvite crystallisation from a source-separated urine stream using two different magnesium sources, namely magnesium chloride and seawater. The latter was chosen as sustainable option to perform P-recovery in coastal areas. Real seawater was used to assess in a more realistic way its efficiency to precipitate P as struvite, since its composition (with noticeable concentration of ions such as Ca2+, SO42-, Na+, …) could lead to the formation of impurities and other precipitates. 0.99 g of struvite was obtained per litre of urine irrespective of the operational conditions tested. In all tested conditions, precipitation efficiencies exceeded 90% and recovery efficiencies were higher than 87%, with an average struvite crystal size higher than 110 µm (and up to 320 µm, depending on the experimental conditions) in the harvested struvite samples. Almost pure struvite was obtained when MgCl2 was used as precipitant, while amorphous calcium phosphate and other impurities appeared in the precipitates using seawater as magnesium source. However, the lower settling velocity of the amorphous precipitates in comparison with the struvite precipitates suggests that their separation at industrial scale could be relatively straightforward.


Assuntos
Conservação dos Recursos Naturais/métodos , Cloreto de Magnésio/química , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Água do Mar/química , Estruvita/química
16.
Data Brief ; 25: 104143, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31372477

RESUMO

This data in brief (DIB) article is related to a Research article [1]. Microalgae biomass absorb the light photons that are supplied to the culture, reducing the light availability in the inner parts of the photobioreactors. This is known as self-shading or shadow effect. This effect has been widely studied in lab conditions, but information about self-shading in outdoor photobioreactors is scarce. How this shadow effect affects the light availability in an outdoor photobioreactor was evaluated. In addition, advantages and disadvantages of different artificial light sources which can overcome light limitation are described.

17.
Bioresour Technol ; 290: 121788, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326649

RESUMO

Two outdoor photobioreactors were operated to evaluate the effect of variable ambient temperature on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Four experiments were carried out in different seasons, maintaining the temperature-controlled PBR at around 25 °C (by either heating or cooling), while the temperature in the non-temperature-controlled PBR was allowed to vary with the ambient conditions. Temperatures in the range of 15-30 °C had no significant effect on the microalgae cultivation performance. However, when the temperature rose to 30-35 °C microalgae viability was significantly reduced. Sudden temperature rises triggered AOB growth in the indigenous microalgae culture, which worsened microalgae performance, especially when AOB activity made the system ammonium-limited. Microalgae activity could be recovered after a short temperature peak over 30 °C once the temperature dropped, but stopped when the temperature was maintained around 28-30 °C for several days.


Assuntos
Chlorella , Microalgas , Bactérias , Biomassa , Fotobiorreatores , Temperatura
18.
Data Brief ; 27: 104599, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667317

RESUMO

This data in brief (DIB) article is related to a Research article entitled 'Optimising an outdoor membrane photobioreactor for tertiary sewage treatment' [1]. Data related to the effect of substrate turbidity, the ammonium concentration at which the culture reaches nitrogen-deplete conditions and the microalgae growth rate under outdoor conditions is provided. Microalgae growth rates under different substrate turbidity were obtained to assess the reduction of the culture's light availability. Lab-scale experiments showed growth rates reductions of 22-44%. Respirometric tests were carried to know the limiting ammonium concentration in this microalgae-based wastewater treatment system. Growth rates (µ) of green microalgae Scenedesmus and Chlorella obtained under outdoor conditions; i.e. 0.40 d-1 (R2 = 0.993) and 0.43 d-1 (R2 = 0.995), respectively, can be useful to obtain optimum operating conditions of membrane photobioreactor (MPBR).

19.
Water Res ; 42(13): 3415-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18538819

RESUMO

A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.


Assuntos
Bactérias/metabolismo , Cálcio/química , Cálcio/metabolismo , Polifosfatos/metabolismo , Precipitação Química , Hibridização in Situ Fluorescente , Eliminação de Resíduos Líquidos
20.
Bioresour Technol ; 99(14): 6285-91, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18194863

RESUMO

Currently, the two most developed techniques for recovering phosphorus from wastewater consist of the formation of calcium phosphates and struvite (MgNH(4)PO(4).6H(2)O). In this work the influence of the operational conditions on the struvite precipitation process (pH in the reactor, hydraulic retention time, and magnesium:phosphorus, nitrogen:phosphorus, and calcium:magnesium molar ratios) have been studied. Twenty-three experiments with artificial wastewater were performed in a stirred reactor. In order to obtain the pH value maintenance during the crystallization process, a fuzzy logic control has been developed. High phosphorus removal efficiencies were reliably achieved precipitating the struvite as easily dried crystals or as pellets made up of agglomerated crystals.


Assuntos
Compostos de Magnésio/química , Fosfatos/química , Cálcio/análise , Precipitação Química , Cristalização , Concentração de Íons de Hidrogênio , Magnésio/análise , Nitrogênio/análise , Fósforo/análise , Projetos Piloto , Estruvita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA