Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1215311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476666

RESUMO

Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA monitoring in wastewater has become an important tool for Coronavirus Disease 2019 (COVID-19) surveillance. Grab (quantitative) and passive samples (qualitative) are two distinct wastewater sampling methods. Although many viral concentration methods such as the usage of membrane filtration and skim milk are reported, these methods generally require large volumes of wastewater, expensive lab equipment, and laborious processes. Methods: The objectives of this study were to compare two workflows (Nanotrap® Microbiome A Particles coupled with MagMax kit and membrane filtration workflows coupled with RNeasy kit) for SARS-CoV-2 recovery in grab samples and two workflows (Nanotrap® Microbiome A Particles and skim milk workflows coupled with MagMax kit) for SARS-CoV-2 recovery in Moore swab samples. The Nanotrap particle workflow was initially evaluated with and without the addition of the enhancement reagent 1 (ER1) in 10 mL wastewater. RT-qPCR targeting the nucleocapsid protein was used for detecting SARS-CoV-2 RNA. Results: Adding ER1 to wastewater prior to viral concentration significantly improved viral concentration results (P < 0.0001) in 10 mL grab and swab samples processed by automated or manual Nanotrap workflows. SARS-CoV-2 concentrations in 10 mL grab and Moore swab samples with ER1 processed by the automated workflow as a whole showed significantly higher (P < 0.001) results than 150 mL grab samples using the membrane filtration workflow and 250 mL swab samples using the skim milk workflow, respectively. Spiking known genome copies (GC) of inactivated SARS-CoV-2 into 10 mL wastewater indicated that the limit of detection of the automated Nanotrap workflow was ~11.5 GC/mL using the RT-qPCR and 115 GC/mL using the digital PCR methods. Discussion: These results suggest that Nanotrap workflows could substitute the traditional membrane filtration and skim milk workflows for viral concentration without compromising the assay sensitivity. The manual workflow can be used in resource-limited areas, and the automated workflow is appropriate for large-scale COVID-19 wastewater-based surveillance.

2.
Diagnostics (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36553022

RESUMO

Infectious uveitis is a sight-threatening infection commonly caused by herpesviruses. Vitreous humor is often collected for molecular confirmation of the causative agent during vitrectomy and mixed in large volumes of buffered saline, diluting the pathogen load. Here, we explore affinity-capture hydrogel particles (Nanotrap®) to concentrate low abundant herpesviruses from diluted vitreous. Simulated samples were prepared using porcine vitreous spiked with HSV-1, HSV-2, VZV and CMV at 105 copies/mL. Pure undiluted samples were used to test capturing capability of three custom Nanotrap particles (red, white and blue) in a vitreous matrix. We found that all particles demonstrated affinity to the herpesviruses, with the Red Particles having both good capture capability and ease of handling for all herpesviruses. To mimic diluted vitrectomy specimens, simulated-infected vitreous were then serially diluted in 7 mL TE buffer. Diluted samples were subjected to an enrichment protocol using the Nanotrap Red particles. Sensitivity of pathogen detection by qPCR in diluted vitreous increased anywhere between 2.3 to 26.5 times compared to non-enriched specimens. This resulted in a 10-fold increase in the limit of detection for HSV-1, HSV-2 and VZV. These data demonstrated that Nanotrap particles can capture and concentrate HSV-1, HSV-2, VZV and CMV in a vitreous matrix.

3.
Assay Drug Dev Technol ; 4(6): 653-60, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17199503

RESUMO

A generic method for real-time monitoring of enzyme kinetics is described in this paper. This approach enables rapid development of assays for high-throughput screening or reaction monitoring in the linear range of the enzyme kinetic curve. In this paper, we used protein kinase A and kemptide (a well-studied assay system) to demonstrate assay optimization by using micro parallel liquid chromatography. The optimal substrate and enzyme concentrations were determined rapidly and conveniently compared with the traditional methods for determining these parameters. Additionally, the data collected from the same experiment permitted calculations of K (m) for the substrate, V (max), and time-course study. In general, this approach provides two advantages. First, the broad ranges of detectable product conversions facilitate selection and implementation of assay conditions for high-throughput screening. Second, the system permits determination of 50% inhibitory concentration values at less than 1% conversion of substrate to product, thereby validating screening hits in the linear range of the enzyme kinetic curve. Overall, this optimization process can be done in less than 8 h. To demonstrate the ability to monitor a wide range of assay conditions, we varied initial concentrations over eight orders of magnitude within a single experiment. Compared with a classical enzyme kinetics study, this method significantly speeds the target validation process and reduces time associated with assay development and high-throughput screening implementation.


Assuntos
Cromatografia Líquida/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA