Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 543(7646): 519-524, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28273065

RESUMO

The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. Here we report a genome-wide method, genome architecture mapping (GAM), for measuring chromatin contacts and other features of three-dimensional chromatin topology on the basis of sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify enrichment for specific interactions between active genes and enhancers across very large genomic distances using a mathematical model termed SLICE (statistical inference of co-segregation). GAM also reveals an abundance of three-way contacts across the genome, especially between regions that are highly transcribed or contain super-enhancers, providing a level of insight into genome architecture that, owing to the technical limitations of current technologies, has previously remained unattainable. Furthermore, GAM highlights a role for gene-expression-specific contacts in organizing the genome in mammalian nuclei.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Elementos Facilitadores Genéticos/genética , Genoma/genética , Animais , Cromatina/química , Epigênese Genética , Masculino , Camundongos , Modelos Genéticos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Sequência de DNA , Transcrição Gênica/genética
2.
Methods ; 181-182: 70-79, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604121

RESUMO

The combination of modelling and experimental advances can provide deep insights for understanding chromatin 3D organization and ultimately its underlying mechanisms. In particular, models of polymer physics can help comprehend the complexity of genomic contact maps, as those emerging from technologies such as Hi-C, GAM or SPRITE. Here we discuss a method to reconstruct 3D structures from Genome Architecture Mapping (GAM) data, based on PRISMR, a computational approach introduced to find the minimal polymer model best describing Hi-C input data from only polymer physics. After recapitulating the PRISMR procedure, we describe how we extended it for treating GAM data. We successfully test the method on a 6 Mb region around the Sox9 gene and, at a lower resolution, on the whole chromosome 7 in mouse embryonic stem cells. The PRISMR derived 3D structures from GAM co-segregation data are finally validated against independent Hi-C contact maps. The method results to be versatile and robust, hinting that it can be similarly applied to different experimental data, such as SPRITE or microscopy distance data.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos/química , Modelos Químicos , Física/métodos , Animais , Cromossomos/genética , Loci Gênicos , Genoma , Camundongos , Conformação Molecular , Células-Tronco Embrionárias Murinas , Polímeros/química , Fatores de Transcrição SOX9/genética
3.
Mol Syst Biol ; 11(12): 852, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26700852

RESUMO

Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher-order organization remains elusive. Here, we investigate TAD higher-order interactions with Hi-C through neuronal differentiation and show that they form a hierarchy of domains-within-domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree-like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.


Assuntos
Cromatina/química , Cromossomos/química , Células-Tronco Embrionárias Murinas/citologia , Neurônios/citologia , Transcrição Gênica , Animais , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica , Camundongos
4.
Proc Natl Acad Sci U S A ; 109(40): 16173-8, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988072

RESUMO

Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the "strings and binders switch" model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed "fractal-globule" model, but only as one of many possible transient conformations.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/química , Regulação da Expressão Gênica/genética , Genoma/genética , Modelos Químicos , Simulação por Computador , Hibridização in Situ Fluorescente , Método de Monte Carlo
5.
Nat Commun ; 15(1): 3905, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724522

RESUMO

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Cromatina , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Heterogeneidade Genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Elementos Facilitadores Genéticos/genética , Cromossomos Humanos/genética
6.
Biochem Soc Trans ; 41(2): 508-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23514144

RESUMO

In the cell nucleus, chromosomes have a complex spatial organization, spanning several length scales, which serves vital functional purposes. It is unknown, however, how their three-dimensional architecture is orchestrated. In the present article, we review the application of a model based on classical polymer physics, the strings and binders switch model, to explain the molecular mechanisms of chromatin self-organization. We explore the scenario where chromatin architecture is shaped and regulated by the interactions of chromosomes with diffusing DNA-binding factors via thermodynamics mechanisms and compare it with available experimental data.


Assuntos
Cromatina/metabolismo , Modelos Biológicos , Animais , Humanos
7.
Nat Genet ; 55(5): 832-840, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012454

RESUMO

Homotypic chromatin interactions and loop extrusion are thought to be the two main drivers of mammalian chromosome folding. Here we tested the role of RNA polymerase II (RNAPII) across different scales of interphase chromatin organization in a cellular system allowing for its rapid, auxin-mediated degradation. We combined Micro-C and computational modeling to characterize subsets of loops differentially gained or lost upon RNAPII depletion. Gained loops, extrusion of which was antagonized by RNAPII, almost invariably formed by engaging new or rewired CTCF anchors. Lost loops selectively affected contacts between enhancers and promoters anchored by RNAPII, explaining the repression of most genes. Surprisingly, promoter-promoter interactions remained essentially unaffected by polymerase depletion, and cohesin occupancy was sustained. Together, our findings reconcile the role of RNAPII in transcription with its direct involvement in setting-up regulatory three-dimensional chromatin contacts genome wide, while also revealing an impact on cohesin loop extrusion.


Assuntos
Cromatina , RNA Polimerase II , Animais , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regiões Promotoras Genéticas/genética , Mamíferos/genética
8.
Res Sq ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645793

RESUMO

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

9.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162887

RESUMO

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

10.
PLoS Comput Biol ; 7(10): e1002229, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046112

RESUMO

X-Chromosome Inactivation (XCI) is the process whereby one, randomly chosen X becomes transcriptionally silenced in female cells. XCI is governed by the Xic, a locus on the X encompassing an array of genes which interact with each other and with key molecular factors. The mechanism, though, establishing the fate of the X's, and the corresponding alternative modifications of the Xic architecture, is still mysterious. In this study, by use of computer simulations, we explore the scenario where chromatin conformations emerge from its interaction with diffusing molecular factors. Our aim is to understand the physical mechanisms whereby stable, non-random conformations are established on the Xic's, how complex architectural changes are reliably regulated, and how they lead to opposite structures on the two alleles. In particular, comparison against current experimental data indicates that a few key cis-regulatory regions orchestrate the organization of the Xic, and that two major molecular regulators are involved.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Modelos Genéticos , Inativação do Cromossomo X , Animais , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/genética , Biologia Computacional , Simulação por Computador , Feminino , Masculino , Camundongos , Termodinâmica
11.
Nat Struct Mol Biol ; 24(6): 515-524, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28436944

RESUMO

Gene expression states influence the 3D conformation of the genome through poorly understood mechanisms. Here, we investigate the conformation of the murine HoxB locus, a gene-dense genomic region containing closely spaced genes with distinct activation states in mouse embryonic stem (ES) cells. To predict possible folding scenarios, we performed computer simulations of polymer models informed with different chromatin occupancy features that define promoter activation states or binding sites for the transcription factor CTCF. Single-cell imaging of the locus folding was performed to test model predictions. While CTCF occupancy alone fails to predict the in vivo folding at genomic length scale of 10 kb, we found that homotypic interactions between active and Polycomb-repressed promoters co-occurring in the same DNA fiber fully explain the HoxB folding patterns imaged in single cells. We identify state-dependent promoter interactions as major drivers of chromatin folding in gene-dense regions.


Assuntos
DNA/química , DNA/metabolismo , Células-Tronco Embrionárias/fisiologia , Loci Gênicos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Animais , Cromatina/metabolismo , Simulação por Computador , Imunofluorescência , Hibridização in Situ Fluorescente , Camundongos , Microscopia Confocal , Ligação Proteica , Análise de Célula Única , Fatores de Transcrição/metabolismo
12.
Nucleus ; 4(4): 267-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23823730

RESUMO

The underlying global organization of chromatin within the cell nucleus has been the focus of intense recent research. Hi-C methods have allowed for the detection of genome-wide chromatin interactions, revealing a complex large-scale organization where chromosomes tend to partition into megabase-sized "topological domains" of local chromatin interactions and intra-chromosomal contacts extends over much longer scales, in a cell-type and chromosome specific manner. Until recently, the distinct chromatin folding properties observed experimentally have been difficult to explain in a single conceptual framework. We reported that a simple polymer-physics model of chromatin, the strings and binders switch (SBS) model, succeeds in describing the full range of chromatin configurations observed in vivo. The SBS model simulates the interactions between randomly diffusing binding molecules and binding sites on a polymer chain. It explains how polymer architectural patterns can be established, how different stable conformations can be produced and how conformational changes can be reliably regulated by simple strategies, such as protein upregulation or epigenetic modifications, via fundamental thermodynamics mechanisms.


Assuntos
Cromatina/química , Cromatina/metabolismo , Polímeros/química , Núcleo Celular , Humanos , Modelos Moleculares , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA