Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biofouling ; 39(1): 94-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916295

RESUMO

The present study aimed to evaluate the effectiveness of hydrogen peroxide (H2O2) combined with antimicrobial photodynamic therapy (aPDT) on biofilms formed by Candida albicans strains which are either susceptible to or resistant to fluconazole. Biofilms were grown and treated with H2O2, followed by the application of Photodithazine® (P) and red light-emitting diode (LED) (L) either separately or combined (n = 12). After the treatment, biofilms were evaluated by estimating colony-forming unit ml-1, extracellular matrix components [water -soluble and -insoluble polysaccharides, proteins, extracellular DNA (eDNA)], biomass (total and insoluble dry-weight), and protein concentration. Biofilms formed by both strains presented a significant reduction in cell viability, biomass, extracellular matrix components (both types of polysaccharides, eDNA), and proteins (in the soluble and insoluble portion of biofilms) compared to the control. Microscopy images of the biofilms after treatments showed disarticulation of the matrix and scattered fungal cells. The application of H2O2 can disturb the organization of the extracellular matrix, and its association with aPDT potentiated the effect of the treatment.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Candida albicans , Peróxido de Hidrogênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Biofilmes , Fotoquimioterapia/métodos
2.
Biofouling ; 37(9-10): 975-983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708675

RESUMO

Polymicrobial biofilms comprising Candida albicans and Staphylococcus aureus can increase the frequency and severity of oral diseases. This study assessed oral keratinocyte cell death, apoptosis and/or necrosis, promoted by soluble factors from single and dual biofilms of S. aureus and C. albicans. The soluble factors were obtained from the 16-h biofilm growth media. Cell viability was assessed by MTT and cell membrane damage by LDH. SEM was used for morphology changes. Assessment of apoptosis and necrosis was performed using annexin V and propidium iodide and caspases -2, -3, -6, -8 and -9. Statistical analysis was conducted with ANOVA and Tukey tests (α = 5%). Dual biofilms promoted the greatest harmful effect on oral cells, with a viability rate of 31.76%, damage to cell membranes and LDH released. Dual biofilms also induced higher percentages of necrotic cells (24.95%). Apoptosis was associated with caspases -2, -3, -6 and -8 activation.


Assuntos
Candida albicans , Staphylococcus aureus , Biofilmes , Morte Celular , Queratinócitos
3.
Biofouling ; 37(9-10): 1006-1021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34789040

RESUMO

Fluconazole-sensitive (CaS) and -resistant (CaR) C. albicans were grown as single-species and dual-species biofilms with Lactobacillus casei (Lc) and Lactobacillus rhamnosus (Lr). Single-species Lc and Lr were also evaluated. Biofilm analysis included viable plate counts, the extracellular matrix components, biomass, and structural organization. Lc reduced the viability of CaS, water-soluble polysaccharides, and eDNA in CaS + Lc biofilm. Lc biofilm presented more eDNA than CaS. The total biomass of CaS + Lc biofilm was higher than the single-species biofilms. The viability of Lc and Lr was reduced by CaR dual-species biofilms. The total and insoluble biomass in CaS + Lr was higher than in single-species CaS biofilms. Lc hindered the growth of CaS, and their association hampered matrix components linked to the structural integrity of the biofilm. These findings allow understanding of how the implementation of probiotics influences the growth of C. albicans biofilms and thereby helps with the development of novel approaches to control these biofilms.


Assuntos
Candida albicans , Lacticaseibacillus casei , Biofilmes , Matriz Extracelular , Fluconazol/farmacologia
4.
J Prosthet Dent ; 122(6): 564.e1-564.e10, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31791536

RESUMO

STATEMENT OF PROBLEM: The longevity of dental implants depends on the maintenance of peri-implant tissue and absence of inflammation. How the physical-chemical properties intrinsic to each material over time can affect adhesion, given constant cell turnover and biofilm development, remains unclear. PURPOSE: The purpose of this in vitro study was to evaluate the influence of aging on the viability, adhesion, and proliferation of normal oral keratinocytes (Nok-si) and on the multispecies biofilm formation of Fusobacterium nucleatum (F. nucleatum), Porphyromonas gingivalis (P. gingivalis), and Streptococcus sanguinis (S. sanguinis). MATERIAL AND METHODS: Zirconia (ZrO2) and titanium (Ti) disks were analyzed by surface roughness, water contact angle, and X-ray diffraction before and after aging in an autoclave. The Nok-si cell viability was evaluated by using a 3-(4.5-dimethylthiazole-2-yl)2.5-diphenyl tetrazolium bromide assay (MTT), morphology by scanning electron microscopy (SEM), and proliferation and adhesion by using a confocal microscope. Multispecies biofilms were analyzed quantitatively by colony-forming units per milliliter (CFU/mL) and qualitatively by SEM. RESULTS: For Ti, the aging process affected the roughness and wettability. However, for ZrO2, the aging did not affect roughness but did affect wettability and the ratio of the tetragonal to monoclinic phase (P<.05). A significant difference was found in the bacterial growth for Ti (nonaged and aged) in relation to the control, and no differences were found in Ti before and after aging; however, ZrO2 had increased growth of microorganisms after aging. For ZrO2, a statistically significant difference was found between aged ZrO2 and the control (P<.001). CONCLUSIONS: The results indicate that, after the aging, Ti showed better cell adhesion and proliferation and lower biofilm adhesion than zirconia.


Assuntos
Implantes Dentários , Titânio , Aderência Bacteriana , Biofilmes , Proliferação de Células , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Zircônio
5.
Molecules ; 23(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126245

RESUMO

Antimicrobial photodynamic therapy (aPDT) has been proposed as an alternative method for oral candidiasis (OC), while nanocarriers have been used to improve the water solubility of curcumin (CUR). The aim of this study is to encapsulate CUR in polymeric nanoparticles (NPs) and to evaluate its photodynamic effects on a murine model of OC. Anionic and cationic CUR-NP is synthesized using poly-lactic acid and dextran sulfate and then characterized. Female mice are immunosuppressed and inoculated with Candida albicans (Ca) to induce OC. aPDT is performed by applying CUR-NP or free CUR on the dorsum of the tongue, followed by blue light irradiation for five consecutive days. Nystatin is used as positive control. Afterward, Ca are recovered and cultivated. Animals are euthanized for histological, immunohistochemical, and DNA damage evaluation. Encapsulation in NP improves the water solubility of CUR. Nystatin shows the highest reduction of Ca, followed by aPDT mediated by free CUR, which results in immunolabelling of cytokeratins closer to those observed for healthy animals. Anionic CUR-NP does not show antifungal effect, and cationic CUR-NP reduces Ca even in the absence of light. DNA damage is associated with Ca infection. Consecutive aPDT application is a safe treatment for OC.


Assuntos
Antifúngicos/administração & dosagem , Candidíase Bucal/microbiologia , Candidíase Bucal/terapia , Curcumina/administração & dosagem , Nanopartículas , Fotoquimioterapia , Polímeros , Animais , Biomarcadores , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Modelos Animais de Doenças , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Imuno-Histoquímica , Camundongos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Fotoquimioterapia/métodos , Polímeros/química
6.
BMC Microbiol ; 17(1): 146, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666415

RESUMO

BACKGROUND: The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. RESULTS: The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. CONCLUSIONS: Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and inflammatory responses.


Assuntos
Proteínas de Bactérias/farmacologia , Candida albicans/metabolismo , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Interleucina-6/metabolismo , Queratinócitos/citologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
7.
J Appl Oral Sci ; 30: e20220319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36753070

RESUMO

OBJECTIVE: Some microorganisms, i.e., Candida albicans, have been associated with cancer onset and development, although whether the fungus promotes cancer or whether cancer facilitates the growth of C. albicans is unclear. In this context, microbial-derived molecules can modulate the growth and resistance of cancer cells. This study isolated extracellular lipids (ECL) from a 36-h Candida albicans biofilm incubated with oral dysplastic (DOK) and neoplastic (SCC 25) cells, which were further challenged with the topoisomerase I inhibitor camptothecin (CPT), a lipophilic anti-tumoral molecule. METHODOLOGY: ECL were extracted from a 36-h Candida albicans biofilm with the methanol/chloroform precipitation method and identified with Nuclear Magnetic Resonance (1H-NMR). The MTT tetrazolium assay measured ECL cytotoxicity in DOK and SCC 25 cells, alamarBlue™ assessed cell metabolism, flow cytometry measured cell cycle, and confocal microscopy determined intracellular features. RESULTS: Three major classes of ECL of C. albicans biofilm were found: phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylglycerol (PG). The ECL of C. albicans biofilm had no cytotoxic effect on neither cell after 24 hours, with a tendency to disturb the SCC 25 cell cycle profile (without statistical significance). The ECL-induced intracellular lipid droplet (LD) formation on both cell lines after 72 hours. In this context, ECL enhanced cell metabolism, decreased the response to CPT, and modified intracellular drug distribution. CONCLUSION: The ECL (PI, PC, and PG) of 36-h Candida albicans biofilm directly interacts with dysplastic and neoplastic oral cells, highlighting the relevance of better understanding C. albicans biofilm signaling in the microenvironment of tumor cells.


Assuntos
Candida albicans , Inibidores da Topoisomerase I , Inibidores da Topoisomerase I/farmacologia , Gotículas Lipídicas , Biofilmes , Lipídeos/farmacologia
8.
Front Bioeng Biotechnol ; 11: 1215438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545886

RESUMO

Silver tungstate (α-Ag2WO4), silver molybdate (ß-Ag2MoO4), and silver vanadate (α-AgVO3) microcrystals have shown interesting antimicrobial properties. However, their biocompatibility is not yet fully understood. Cytotoxicity and the inflammatory response of silver-containing microcrystals were analyzed in THP-1 and THP-1 differentiated as macrophage-like cells, with the alamarBlue™ assay, flow cytometry, confocal microscopy, and ELISA. The present investigation also evaluated redox signaling and the production of cytokines (TNFα, IL-1ß, IL-6, and IL-8) and matrix metalloproteinases (MMP-8 and -9). The results showed that α-AgVO3 (3.9 µg/mL) did not affect cell viability (p > 0.05). α-Ag2WO4 (7.81 µg/mL), ß-Ag2MoO4 (15.62 µg/mL), and α-AgVO3 (15.62 µg/mL) slightly decreased cell viability (p ≤ 0.003). All silver-containing microcrystals induced the production of O2 - and this effect was mitigated by Reactive Oxygen Species (ROS) scavenger and N-acetylcysteine (NAC). TNFα, IL-6 and IL-1ß were not detected in THP-1 cells, while their production was either lower (p ≤ 0.0321) or similar to the control group (p ≥ 0.1048) for macrophage-like cells. The production of IL-8 by both cellular phenotypes was similar to the control group (p ≥ 0.3570). The release of MMP-8 was not detected in any condition in THP-1 cells. Although MMP-9 was released by THP-1 cells exposed to α-AgVO3 (3.9 µg/mL), no significant difference was found with control (p = 0.7). Regarding macrophage-like cells, the release of MMP-8 and -9 decreased in the presence of all microcrystals (p ≤ 0.010). Overall, the present work shows a promising biocompatibility profile of, α-Ag2WO4, ß-Ag2MoO4, and α-AgVO3 microcrystals.

9.
Front Microbiol ; 14: 1274201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188579

RESUMO

The study evaluated the association of DNase I enzyme with antimicrobial photodynamic therapy (aPDT) in the treatment of oral candidiasis in mice infected with fluconazole-susceptible (CaS) and -resistant (CaR) Candida albicans strains. Mice were inoculated with C. albicans, and after the infection had been established, the tongues were exposed to DNase for 5 min, followed by photosensitizer [Photodithazine®(PDZ)] and light (LED), either singly or combined. The treatments were performed for 5 consecutive days. Treatment efficacy was evaluated by assessing the tongues via fungal viable population, clinical evaluation, histopathological and fluorescence microscopy methods immediately after finishing treatments, and 7 days of follow-up. The combination of DNase with PDZ-aPDT reduced the fungal viability in mice tongues immediately after the treatments by around 4.26 and 2.89 log10 for CaS and CaR, respectively (versus animals only inoculated). In the fluorescence microscopy, the polysaccharides produced by C. albicans and fungal cells were less labeled in animals treated with the combination of DNase with PDZ-aPDT, similar to the healthy animals. After 7 days of the treatment, DNase associated with PDZ-aPDT maintained a lower count, but not as pronounced as immediately after the intervention. For both strains, mice treated with the combination of DNase with PDZ-aPDT showed remission of oral lesions and mild inflammatory infiltrate in both periods assessed, while animals treated only with PDZ-aPDT presented partial remission of oral lesions. DNase I enzyme improved the efficacy of photodynamic treatment.

10.
Front Microbiol ; 14: 1183247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342560

RESUMO

Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.

11.
Front Bioeng Biotechnol ; 10: 826123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237581

RESUMO

Fungal infections have become a major concern in the medical community, especially those caused by Candida spp. Within this species, Candida albicans stands out for being an opportunistic commensal fungus that can cause superficial and invasive infections. Current antifungal therapy involves the local and/or systemic use of drugs such as azoles, polyenes, and echinocandins. These antifungals are based on highly specific target sites, and the development of resistance may occur with changes in the enzymatic pathways that serve as the drug targets. Thus, the development of new antifungal drugs is highly recommended to prevent drug resistance. The present investigation evaluated the antifungal activity of silver-containing microcrystals such as silver vanadate (α-AgVO3), silver tungstate (α-Ag2WO4), and silver molybdate (ß-Ag2MoO4). In addition to having antimicrobial activity, such compounds should not cause damage to underlying tissues. Thus, to better assess the biocompatibility of new compounds, a new three-dimensional (3D) coculture model involving three cell lines was developed. The validation of the model was based on fluorescent markers and confocal laser microscopy. The biocompatibility of silver-containing microcrystals was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 3D coculture was infected with C. albicans biofilm and challenged with α-AgVO3, α-Ag2WO4, and ß-Ag2MoO4. The action of microcrystals on C. albicans biofilm was evaluated by colony-forming units (CFU/ml) and LIVE/DEAD staining. In addition, production of proinflammatory cytokines interleukin 6 (IL-6), IL-8, IL-1ß, and tumor necrosis factor α (TNF-α) was measured by cytometric bead array kit using flow cytometry. The 3D coculture model described here proved to be adequate to assess both the biocompatibility of the new materials and the infectious processes. Regarding the biocompatibility of the microcrystals, only α-AgVO3 (15.62 µg/ml) showed a decrease in cell viability. The antibiofilm activity of α-Ag2WO4 was similar to that of the standard drug (fluconazole). Although α-Ag2WO4 was able to induce the production of IL-6, IL-8, and IL-1ß, no differences in cytokine production were observed between noninfected and infected models treated with this microcrystal. ß-Ag2MoO4 inhibits the production of TNF-α in the infected model; however, it showed no antibiofilm activity. Based on the biocompatibility and antifungal findings, α-Ag2WO4 is a promising material for treating C. albicans infection.

12.
Photodiagnosis Photodyn Ther ; 40: 103104, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057364

RESUMO

In this study, the action of antimicrobial peptide (AMP) P5 and antimicrobial photodynamic therapy (aPDT) mediated by bixin and chlorin-e6 (Ce6) on Cutibacterium acnes (C. acnes) in planktonic phase and biofilm were evaluated both as monotherapies and combined therapies. Microbial viability after treatments were quantified by colony-forming units per milliliter of the sample (CFU/mL) and have demonstrated that all treatments employed exerted bactericidal activity, reducing the microbial load by more than 3 log10 CFU/mL, also demonstrating for the first time in the literature the antimicrobial photodynamic effect of bixin that occurs mostly through type I mechanism which was proved by the quantification of superoxide anion production. Bacterial biofilm was completely eliminated only after its exposure to aPDT mediated by this PS, however, Ce6 proved to be a more efficient PS, considering that most of the photodynamic effect of bixin- aPDT was exerted by excitation of the endogenous C porphyrins of C. acnes with blue light. The combination of P5 with Ce6-aPDT showed a synergistic effect on the bacterial biofilm with a reduction in microbial load by more than 10 log10 CFU/mL, in which the ability of P5 to permeabilize the polymeric extracellular matrix of the biofilm explains the obtained results, with greater internalization of the PS as shown by the Confocal Laser Scanning Microscopy. One-way ANOVA (Analysis of Variance) with Tukey's post-test and two-way ANOVA with Bonferroni's post-test were used to compare the values of continuous variables between the control group and the treatment groups.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Biofilmes , Propionibacterium acnes , Anti-Infecciosos/farmacologia , Bactérias , Peptídeos/farmacologia , Fármacos Fotossensibilizantes/farmacologia
13.
Microbiol Spectr ; 10(4): e0065022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862994

RESUMO

Dental caries is a multifactorial biofilm- and sugar-dependent disease. This study investigated the influence of different agents on the induction of surviving Streptococcus mutans cells after successive treatment cycles and characterized the biofilms formed by these cells recovered posttreatment. The agents (with their main targets listed in parentheses) were compound 1771 (lipoteichoic acids), 4' hydroxychalcone (exopolysaccharides), myricetin (exopolysaccharides), tt-farnesol (cytoplasmatic membrane), sodium fluoride (enolase-glycolysis), chlorhexidine (antimicrobial), and vehicle. Recovered cells from biofilms were generated from exposure to each agent during 10 cycles of consecutive treatments (modeled on a polystyrene plate bottom). The recovered cell counting was different for each agent. The recovered cells from each group were grown as biofilms on saliva-coated hydroxyapatite discs (culture medium with sucrose/starch). In S. mutans biofilms formed by cells recovered from biofilms previously exposed to compound 1771, 4' hydroxychalcone, or myricetin, cells presented higher expression of the 16S rRNA, gyrA (DNA replication and transcription), gtfB (insoluble exopolysaccharides), and eno (enolase-glycolysis) genes and lower quantities of insoluble dry weight and insoluble exopolysaccharides than those derived from other agents. These findings were confirmed by the smaller biovolume of bacteria and/or exopolysaccharides and the biofilm distribution (coverage area). Moreover, preexposure to chlorhexidine increased exopolysaccharide production. Therefore, agents with different targets induce cells with distinct biofilm formation capacities, which is critical for developing formulations for biofilm control. IMPORTANCE This article addresses the effect of distinct agents with distinct targets in the bacterial cell (cytoplasmatic membrane and glycolysis), the cell's extracellular synthesis of exopolysaccharides that are important for cariogenic extracellular matrix construction and biofilm buildup in the generation of cells that persisted after treatment, and how these cells form biofilms in vitro. For example, if preexposure to an agent augments the production of virulence determinants, such as exopolysaccharides, its clinical value may be inadequate. Modification of biofilm formation capacity after exposure to agents is critical for the development of formulations for biofilm control to prevent caries, a ubiquitous disease associated with biofilm and diet.


Assuntos
Cárie Dentária , Streptococcus mutans , Biofilmes , Clorexidina/metabolismo , Clorexidina/farmacologia , Humanos , Fosfopiruvato Hidratase/metabolismo , Polissacarídeos Bacterianos/metabolismo , RNA Ribossômico 16S , Streptococcus mutans/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-36462797

RESUMO

The development of new drugs based on metal complexes requires a detailed analysis of their biological endpoints. In this study, we report the genotoxic profile and influence on cell proliferation and death of the oxovanadium(IV) complex with orotic acid ([VO(C5H4N2O4)2], VO(oro)). Human hepatocellular carcinoma cells (HepG2) were the most sensitive tumor cells to VO(oro), which interfered with the integrity of cell membranes and proliferative capacity in a dose-dependent manner, inducing cell death by apoptosis. Regarding genotoxicity, VO(oro) did not induce considerable levels of DNA damage in HepG2 cells (comet test) and gene mutations (Ames test). However, it caused a statistically significant increase in the frequency of micronuclei at the highest concentration tested (12.5 µmol.L-1), indicating aneuploidy and clastogenicity. The data presented here provide information on various biological aspects of the VO(oro) complex, which may allow the elucidation of its mechanism of action as a possible therapeutic agent.


Assuntos
Dano ao DNA , Ácido Orótico , Humanos , Mutagênicos/toxicidade , Mutação , Morte Celular
15.
Front Microbiol ; 13: 1078972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620034

RESUMO

Cyclins are a family of proteins characterized by possessing a cyclin box domain that mediates binding to cyclin dependent kinases (CDKs) partners. In this study, the search for a partner cyclin of the PHO85-1 CDK retrieved PCL-1 an ortholog of yeast Pcls (for Pho85 cyclins) that performs functions common to Pcls belonging to different cyclin families. We show here that PCL-1, as a typical cyclin, is involved in cell cycle control and cell progression. In addition, PCL-1 regulates glycogen metabolism; Δpcl-1 cells accumulate higher glycogen levels than wild-type cells and the glycogen synthase (GSN) enzyme is less phosphorylated and, therefore, more active in the mutant cells. Together with PHO85-1, PCL-1 phosphorylates in vitro GSN at the Ser636 amino acid residue. Modeling studies identified PHO85-1 and PCL-1 as a CDK/cyclin complex, with a conserved intermolecular region stabilized by hydrophobic and polar interactions. PCL-1 is also involved in calcium and NaCl stress response. Δpcl-1 cells are sensitive to high NaCl concentration; on the contrary, they grow better and overexpress calcium responsive genes under high calcium chloride concentration compared to the wild-type strain. The expression of the calcium-responsive CRZ-1 transcription factor is modulated by PCL-1, and this transcription factor seems to be less phosphorylated in Δpcl-1 cells since exhibits nuclear location in these cells in the absence of calcium. Our results show that PCL-1 locates at different cell regions suggesting that it may determine its activity by controlling its intracellular location and reveal an interesting functional divergence between yeast and filamentous fungus cyclins.

16.
Front Cell Infect Microbiol ; 11: 627043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718274

RESUMO

This study was aimed at analyzing proto-oncogenic signaling pathway activation in normal oral keratinocytes (NOK-si) and neoplastic cell lines (SCC 25 and Detroit 562) stimulated with metabolites (soluble factors) from single and dual biofilms of Candida albicans and Staphylococcus aureus. Soluble factors (SF) from early (16-h) and mature (36-h) biofilms of C. albicans and S. aureus were collected and incubated with cell cultures, which were subsequently evaluated using gene expression via RT-qPCR, cell viability via AlamarBlueTM, and flow cytometry cell cycle analysis. In general, exposure to the SF of early and mature biofilms from C. albicans and dual species caused a major reduction in NOK-si cell viability and enhanced the sub G0 phase. This led to a decrease in gene expression. However, in this cell line, SF of S. aureus biofilms upregulated the CDKN1A gene followed by the maintenance of cell viability and a significant increase in the G2/M population. For tumor cells, SCC 25 and Detroit 562, the stimuli of SF biofilms upregulated oncogenes such as hRAS and mTOR, as well as Bcl-2 and CDKN1A. SCC 25 and Detroit 562 cells could survive even after 24 h of stimuli from both SF (early and mature). This occurred without significant changes taking place in the cell cycle progression for SCC 25, and with a significant tendency to increase the G2/M phase for Detroit 562. These results point to the fact that metabolites from prevalent clinical fungal and bacterial biofilms, C. albicans and S. aureus, can disrupt the homeostasis of normal and neoplastic oral epithelial cells. This changes proto-oncogenes' expression, specifically PI3KCA, hRAS, mTOR, BRAF, and cell cycle genes CDKN1A and Bcl-2, thus causing a disturbance in cell viability, survival, and the cell cycle profile.


Assuntos
Candida albicans , Staphylococcus aureus , Biofilmes , Candida albicans/genética , Células Epiteliais , Genes cdc , Proto-Oncogenes , Staphylococcus aureus/genética
17.
Oral Health Prev Dent ; 18(1): 999-1010, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215491

RESUMO

PURPOSE: This study investigated the effect of long-term daily chemical disinfection on the topographic and Candida albicans biofilm formation on a denture base resin and a reline acrylic resin. MATERIAL AND METHODS: Circular samples (14 × 1.2 mm) were fabricated from a denture base (Vipi Wave) and reline acrylic resins (Tokuyama Rebase Fast II). Samples were kept in 50 ml of distilled water (48 h at 37°C). Subsequently, the samples were immersed in five different solutions: 0.5% sodium hypochlorite; 3.8% sodium perborate; 2% chlorhexidine gluconate; apple vinegar containing 4% maleic acid; and distilled water (control group). The specimen was immersed in the solutions for 8 h daily and transferred to distilled water at 37°C for more 16 h. The surface topographic and Candida albicans (ATCC 90028) biofilm formation were evaluated at baseline (before chemical disinfection) and after 1, 3 and 6 months of immersion. The surface topographic was evaluated by arithmetical roughness average (Ra) and scanning electron microscope (SEM), while the biofilm formation was evaluated by colony-forming units (CFU/ml) method and Alamar Blue assay (cell metabolism). The results were evaluated by three-way analysis of variance (ANOVAs) and post-hoc tests (α = 0.05). RESULTS: The results showed statistically significant effects from the type of acrylic resin (p = 0.029) and time (p <0.001) on the roughness of the specimen. In general, the reline resin had higher roughness than the denture base resin. In addition, the roughness of the samples after 1, 3 and 6 months of immersion in the cleaning solutions was higher than at baseline. In relation to the microbiological assays, there were no statistically significant differences (p >0.055) in the CFU/ml values of the biofilms among the different resins, periods of time and cleaning solutions. Considering the metabolism of the cells within the biofilms, the results showed that, at baseline, it was statistically significantly higher (p <0.05) than after 1, 3 and 6 months of storage. The SEM images showed that all disinfectant solutions provided surface changes of both acrylic resins (base and reline) after 1, 3 and 6 months of immersion. CONCLUSIONS: The roughness of both acrylic resins was affected by the disinfection in all cleaning agents, increasing over time, and this effect was more evident in the reline acrylic resin group. This surface change was also observed in the SEM images. While the number of cells within the biofilms was not affected by immersion in the cleaning agents, their metabolism was lower after 1, 3 and 6 months of immersion.


Assuntos
Candida albicans , Desinfecção , Resinas Acrílicas , Biofilmes , Bases de Dentadura , Higienizadores de Dentadura/farmacologia , Teste de Materiais , Propriedades de Superfície
18.
J Photochem Photobiol B ; 209: 111903, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32531689

RESUMO

The antimicrobial photodynamic therapy (aPDT) has stood out as an alternative and promising method of disinfection and has been exploited for the treatment of oral bacteria. In this study, we evaluate in vitro the action of aPDT, mediated by methylene blue, chlorin-e6, and curcumin against clinical subgingival plaques that were resistant to metronidazole. The sensitivity profile of the samples to metronidazole was analyzed by the agar dilution method. Cell viability in the planktonic and biofilm phase was assessed by CFU / mL. The composition of the biofilm was evaluated by the checkboard DNA-DNA Hibrydization technique. Photosensitizers internalization was qualitatively assessed by confocal fluorescence microscopy (CLSM). The aPDT mediated by the three photosensitizers tested was able to reduce the totality of the planktonic microbial load and partially reduce the biofilm samples. The analysis performed by CLSM showed that the photosensitizers used in the application of aPDT were able to permeate the interior of the biofilm. The aPDT has been shown to be useful in a supportive and effective approach to the treatment of periodontal disease.


Assuntos
Antibacterianos/farmacologia , Placa Dentária/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Metronidazol/farmacologia , Fotoquimioterapia/métodos , Biofilmes/efeitos dos fármacos , Clorofilídeos , Curcumina/farmacologia , Humanos , Azul de Metileno/farmacologia , Testes de Sensibilidade Microbiana , Doenças Periodontais/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia
19.
Mater Sci Eng C Mater Biol Appl ; 108: 110405, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923947

RESUMO

The number of studies on microcrystals containing silver has increased in recent decades. Among the silver-containing microcrystals, α-AgVO3 has gained prominence owing to its polymorphism that allows it to exert interesting antimicrobial activity against pathogenic microorganisms. The aim of this study was to evaluate the antifungal activity and cytotoxicity of three different α-AgVO3 microcrystals when in solution. α-AgVO3 microcrystals were synthesized using the co-precipitation method at three different temperatures (10 °C, 20 °C, and 30 °C), and then characterized by X-ray diffraction and scanning electron microscopy. The antifungal activity of α-AgVO3 microcrystals against Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). Fluorescence images were obtained to confirm antifungal concentrations. To assess the biocompatibility of microcrystals applied at MIC and MFC on keratinocytes cells (NOK-si), an Alamar Blue assay, scanning electron microscopy, and a DNA gel integrity test were carried out. The quantitative and qualitative results showed that, regardless of the co-precipitation method used to synthetize α-AgVO3 microcrystals, C. albicans growth was visibly inhibited at 3.9 µg/mL (MIC) and completely inhibited at 15.62 µg/mL (MFC). The cytotoxic and genotoxic outcomes revealed that the MIC and MFC concentrations did not affect NOK-si cell morphology, proliferation, or DNA integrity. The search for new antimicrobial materials has been the focus of the research community recently because of increases in microbial resistance. The findings reported herein demonstrate a novel antifungal and non-cytotoxic material that could be used in biomedical and dental applications.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Óxidos/farmacologia , Compostos de Prata/farmacologia , Compostos de Vanádio/farmacologia , Antifúngicos/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Óxidos/efeitos adversos , Compostos de Prata/efeitos adversos , Compostos de Vanádio/efeitos adversos
20.
J Oral Microbiol ; 11(1): 1581520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681463

RESUMO

Background: Streptococcus mutans (Sm) and Candida albicans (Ca) are found in biofilms of early childhood caries. Objective: To characterize in vitro dual- and single-species biofilms of Sm and Ca formed on saliva-coated hydroxyapatite discs in the presence of sucrose. Design: Evaluation of biofilms included biochemical [biomass, proteins, matrix's water-soluble (WSP) and alkali-soluble (ASP) polysaccharides, microbiological, 3D structure, gene expression, and stress tolerance analyses. Results: Biomass and proteins were higher for dual-species and lower for Ca (p = 0.001). Comparison of Sm single- and dual-species biofilms revealed no significant difference in Sm numbers or quantity of WSP (p > 0.05). Dual-species biofilms contained a higher population of Ca (p < 0.001). The quantity of ASP was higher in dual-species biofilms (vs Ca single-species biofilms; p = 0.002). The 3D structure showed larger microcolonies and distinct distribution of Sm-derived exopolysaccharides in dual-species biofilms. Compared with dual-species biofilms, expression of gtfB (ASP) and nox1 (oxidative stress) was higher for single-species of Sm whilst expression of BGL2 (matrix), PHR1 (matrix, acid tolerance) and SOD1 (oxidative stress) was higher in single-species of Ca. There was no difference for acid tolerance genes (Sm atpD and Ca PHR2), which was confirmed by acid tolerance challenge. Dual-species biofilms were more tolerant to oxidative and antimicrobial stresses (p < 0.05). Conclusions: Dual-species biofilms present greater 3D complexity, thereby, making them more resistant to stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA