RESUMO
The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.
Assuntos
Regiões 3' não Traduzidas , Estágios do Ciclo de Vida , Proteínas de Protozoários , Proteínas de Ligação a RNA , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estágios do Ciclo de Vida/genética , Regiões 3' não Traduzidas/genética , Animais , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poli A/metabolismo , Poli A/genética , PoliadenilaçãoRESUMO
Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.
Assuntos
Células Supressoras Mieloides , Tristetraprolina , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Fenótipo , Tristetraprolina/genéticaRESUMO
Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.
Assuntos
Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mitocondrial/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/genética , Trypanosoma brucei brucei/metabolismoRESUMO
BACKGROUND: Shiga toxin-producing E. coli (STECs) are foodborne pathogens associated with bloody diarrhea and hemolytic uremic syndrome (HUS). Although the STEC O157 serogroup accounts for the highest number of infections, HUS-related complications and deaths, the STEC non-O157, as a group, accounts for a larger proportion of STEC infections and lower HUS cases. There is limited information available on how to recognize non-O157 serotypes associated with severe disease. The objectives of this study were to describe a patient with STEC non-O157 infection complicated with HUS and to conduct a comparative whole genome sequence (WGS) analysis among the patient's STEC clinical isolate and STEC O157 and non-O157 strains. RESULTS: The STEC O145:H25 strain EN1I-0044-2 was isolated from a pediatric patient with diarrhea, HUS and severe neurologic and cardiorespiratory complications, who was enrolled in a previously reported case-control study of acute gastroenteritis conducted in Davidson County, Tennessee in 2013. The strain EN1I-0044-2 genome sequence contained a chromosome and three plasmids. Two of the plasmids were similar to those present in O145:H25 strains whereas the third unique plasmid EN1I-0044-2_03 shared no similarity with other STEC plasmids, and it carried 23 genes of unknown function. Strain EN1I-0044-2, compared with O145:H25 and O157 serogroup strains shared chromosome- and plasmid-encoded virulence factors, including Shiga toxin, LEE type III secretion system, LEE effectors, SFP fimbriae, and additional toxins and colonization factors. CONCLUSIONS: A STEC O145:H25 strain EN1I-0044-2 was isolated from a pediatric patient with severe disease, including HUS, in Davidson County, TN. Phylogenetic and comparison WGS analysis provided evidence that strain EN1I-0044-2 closely resembles O145:H25, and confirmed an independent evolutionary path of STEC O145:H25 and O145:H28 serotypes. The strain EN1I-0044-2 virulence make up was similar to other O145:H25 and O157 serogroups. It carried stx2 and the LEE pathogenicity island, and additional colonization factors and enterotoxin genes. A unique feature of strain EN1I-0044-2 was the presence of plasmid pEN1I-0044-2_03 carrying genes with functions to be determined. Further studies will be necessary to elucidate the role that newly acquired genes by O145:H25 strains play in pathogenesis, and to determine if they may serve as genetic markers of severe disease.
Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Estudos de Casos e Controles , Criança , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Genômica , Humanos , Filogenia , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/genética , TennesseeRESUMO
The direct conversion of accessible cells such as human fibroblasts to inaccessible cells, particularly neurons, opens up many opportunities for using the human model system to study diseases and discover therapies. Previous studies have indicated that the neuronal conversion of adult human skin fibroblasts is much harder than that for human lung fibroblasts, which are used in many experiments. Here we formally report this differential plasticity of human skin versus lung fibroblasts in their transdifferentiation to induced neurons. Using RNAseq of isogenic and non-isogenic pairs of human skin and lung fibroblasts at different days in their conversion to neurons, we found that several master regulators (TWIST1, TWIST2, PRRX1 and PRRX2) in the fibroblast Gene Regulatory Network were significantly downregulated in lung fibroblasts, but not in skin fibroblasts. By knocking down each of these genes and other genes that suppress the neural fate, such as REST, HES1 and HEY2, we found that the combined attenuation of HEY2 and PRRX2 significantly enhanced the transdifferentiation of human skin fibroblasts induced by ASCL1 and p53 shRNA. The new method, which overexpressed ASCL1 and knocked down p53, HEY2 and PRRX2 (ApH2P2), enabled the efficient transdifferentiation of adult human skin fibroblasts to MAP2+ neurons in 14 days. It would be useful for a variety of applications that require the efficient and speedy derivation of patient-specific neurons from skin fibroblasts.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Pele/metabolismo , Proteína Supressora de Tumor p53/genética , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular , Reprogramação Celular , Fibroblastos/citologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Pele/citologia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismoRESUMO
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180.
Assuntos
Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Sequência de Bases , Linhagem Celular , Modelos Biológicos , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Uridine insertion/deletion RNA editing in kinetoplastids entails the addition and deletion of uridine residues throughout the length of mitochondrial transcripts to generate translatable mRNAs. This complex process requires the coordinated use of several multiprotein complexes as well as the sequential use of noncoding template RNAs called guide RNAs. The majority of steady-state mitochondrial mRNAs are partially edited and often contain regions of mis-editing, termed junctions, whose role is unclear. Here, we report a novel method for sequencing entire populations of pre-edited partially edited, and fully edited RNAs and analyzing editing characteristics across populations using a new bioinformatics tool, the Trypanosome RNA Editing Alignment Tool (TREAT). Using TREAT, we examined populations of two transcripts, RPS12 and ND7-5', in wild-typeTrypanosoma brucei We provide evidence that the majority of partially edited sequences contain junctions, that intrinsic pause sites arise during the progression of editing, and that the mechanisms that mediate pausing in the generation of canonical fully edited sequences are distinct from those that mediate the ends of junction regions. Furthermore, we identify alternatively edited sequences that constitute plausible alternative open reading frames and identify substantial variability in the 5' UTRs of both canonical and alternatively edited sequences. This work is the first to use high-throughput sequencing to examine full-length sequences of whole populations of partially edited transcripts. Our method is highly applicable to current questions in the RNA editing field, including defining mechanisms of action for editing factors and identifying potential alternatively edited sequences.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Edição de RNA , RNA Mensageiro/genética , Trypanosoma brucei brucei/genética , Algoritmos , AnimaisRESUMO
Previous studies using culture-based methods suggested an association between constipation and altered abundance of certain taxa of the colonic microbiome. We aim to examine the global changes in gut microbial composition of constipated patients. A cross-sectional pilot study using 16S rRNA gene pyrosequencing was performed to compare stool microbial composition of eight constipated patients and 14 nonconstipated controls. Only obese children were enrolled so that the microbiome features associated with constipation would not be obscured by those associated with obesity. The sequencing reads were processed by QIIME for quantitative analysis of the microbial composition at genus and above levels. Dietary intake for all the individuals was assessed by dietary recalls and a food frequency questionnaire. The ecological diversities of fecal microbiome of the constipated patients differed from those of the controls. Significantly decreased abundance in Prevotella and increased representation in several genera of Firmicutes were observed in constipated patients compared with controls. The conventional probiotic genera Lactobacillus and Bifidobacteria were not decreased in the microbiomes of the constipated patients. These alterations in the fecal microbiome of constipated patients suggested that a novel probiotic treatment including certain Prevotella strains may be more effective than conventional probiotic products incorporating Lactobacillus or Bifidobacterium species. While it is possible that the observed changes in the microbiome in constipated subjects are a consequence of a low-fiber diet, these changes also predict a different pattern of bacterial fermentation end-products, such as increased butyrate production, which may contribute to pathogenesis of constipation.
Assuntos
Constipação Intestinal/microbiologia , Trato Gastrointestinal/microbiologia , Microbiota/genética , Adolescente , Biodiversidade , Estudos de Casos e Controles , Criança , Constipação Intestinal/complicações , Feminino , Humanos , Masculino , Obesidade/complicações , Obesidade/microbiologia , FilogeniaRESUMO
We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, â¼152 bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRs-a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms.
Assuntos
Cromatina/química , Origem de Replicação , Schizosaccharomyces/genética , Sítio de Iniciação de Transcrição , Proteínas de Ligação a DNA/análise , Genes Fúngicos , Sequenciamento de Nucleotídeos em Larga Escala , Nuclease do Micrococo , Nucleossomos/química , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/análise , Análise de Sequência de DNARESUMO
Mouse postnatal neural stem cells (pNSCs) can be expanded in vitro in the presence of epidermal growth factor and fibroblast growth factor 2 and upon removal of these factors cease proliferation and generate neurons, astrocytes, and oligodendrocytes. The genetic requirements for self-renewal and lineage-commitment of pNSCs are incompletely understood. In this study, we show that the transcription factors NFIA and NFIB, previously shown individually, to be essential for the normal commitment of pNSCs to the astrocytic lineage in vivo, are jointly required for normal self-renewal of pNSCs in vitro and in vivo. Using conditional knockout alleles of Nfia and Nfib, we show that the simultaneous loss of these two genes under self-renewal conditions in vitro reduces the expression of the proliferation markers PCNA and Ki67, eliminates clonogenicity of the cells, reduces the number of cells in S phase, and induces aberrant differentiation primarily into the neuroblast lineage. This phenotype requires the loss of both genes and is not seen upon loss of Nfia or Nfib alone, nor with combined loss of Nfia and Nfix or Nfib and Nfix. These data demonstrate a unique combined requirement for both Nfia and Nfib for pNSC self-renewal.
Assuntos
Fatores de Transcrição NFI , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular/fisiologia , Autorrenovação Celular , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismoRESUMO
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.
RESUMO
Rationale: We showed that levels of a murine mitochondrial noncoding RNA, mito-ncR-LDL805 , increase in alveolar epithelial type 2 cells exposed to extracts from cigarette smoke. The transcripts translocate to the nucleus, upregulating nucleus-encoded mitochondrial genes and mitochondrial bioenergetics. This response is lost after chronic exposure to smoke in a mouse model of chronic obstructive pulmonary disease. Objectives: To determine if mito-ncR-LDL805 plays a role in human disease, this study aimed to (i) identify the human homologue, (ii) test if the smoke-induced response occurs in human cells, (ii) determine causality between the subcellular localization of the transcript and increased mitochondrial bioenergetics, and (iii) analyze mito-ncR-LDL805 transcript levels in samples from patients with chronic obstructive pulmonary disease. Methods: Levels and subcellular localization of the human homologue identified from an RNA transcript library were assessed in human alveolar epithelial type 2 cells exposed to smoke extract. Lipid nanoparticles were used for nucleus-targeted delivery of mito-ncR-LDL805 transcripts. Analyses included in situ hybridization, quantitative PCR, cell growth, and Seahorse mitochondrial bioenergetics assays. Measurements and Main Results: The levels of human homologue transiently increased and the transcripts translocated to the nuclei in human cells exposed to smoke extract. Targeted nuclear delivery of transcripts increased mitochondrial bioenergetics. Alveolar cells from humans with chronic obstructive pulmonary disease had reduced levels of the mito-ncR-LDL805 . Conclusions: mito-ncR-LDL805 mediates mitochondrial bioenergetics in murine and human alveolar epithelial type 2 cells in response to cigarette smoke exposure, but this response is likely lost in diseases associated with chronic smoking, such as chronic obstructive pulmonary disease, due to its diminished levels. Impact: This study describes a novel mechanism by which epithelial cells in the lungs adapt to the mitochondrial stress triggered by exposure to cigarette smoke. We show that a noncoding RNA in mitochondria is upregulated and translocated to the nuclei of alveolar epithelial type 2 cells to trigger expression of genes that restore mitochondrial bioenergetics. Mitochondria function and levels of the noncoding RNA decrease under conditions that lead to chronic obstructive pulmonary disease, suggesting that the mitochondrial noncoding RNA can serve as potential therapeutic target to restore function to halt disease progression.
RESUMO
MOTIVATION: The extension of mapped sequence tags is a common step in the analysis of single-end next-generation sequencing (NGS) data from protein localization and chromatin studies. The optimal extension can vary depending on experimental and technical conditions. Improper extension of sequence tags can obscure or mislead the interpretation of NGS results. We present an algorithm, ArchTEx (Architectural Tag Extender), which identifies the optimal extension of sequence tags based on the maximum correlation between forward and reverse tags and extracts and visualizes sites of interest using the predicted extension. AVAILABILITY AND IMPLEMENTATION: ArchTEx requires Java 1.6 or newer. Source code and the compiled program are freely available at http://sourceforge.net/projects/archtex/ CONTACT: mjbuck@buffalo.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Análise de Sequência de DNA/métodos , SoftwareRESUMO
Mitochondrial calcium (m Ca2+ ) uptake occurs via the Mitochondrial Ca2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s-flow)-induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d-flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow-regulated EC function, flow-induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS- and OS-exposed, compared to static, ECs suggested an enhanced m Ca2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single-cell RNA-sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s-flow or d-flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.
Assuntos
Células Endoteliais , Proteínas de Transporte da Membrana Mitocondrial , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Mitocôndrias/metabolismo , Coração , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismoRESUMO
The sequencing of human virus genomes from wastewater samples is an efficient method for tracking viral transmission and evolution at the community level. However, this requires the recovery of viral nucleic acids of high quality. We developed a reusable tangential-flow filtration system to concentrate and purify viruses from wastewater for genome sequencing. A pilot study was conducted with 94 wastewater samples from four local sewersheds, from which viral nucleic acids were extracted, and the whole genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was sequenced using the ARTIC V4.0 primers. Our method yielded a high probability (0.9) of recovering complete or near-complete SARS-CoV-2 genomes (>90% coverage at 10× depth) from wastewater when the COVID-19 incidence rate exceeded 33 cases per 100 000 people. The relative abundances of sequenced SARS-CoV-2 variants followed the trends observed from patient-derived samples. We also identified SARS-CoV-2 lineages in wastewater that were underrepresented or not present in the clinical whole-genome sequencing data. The developed tangential-flow filtration system can be easily adopted for the sequencing of other viruses in wastewater, particularly those at low concentrations.
RESUMO
BACKGROUND: The organization of eukaryotic DNA into chromatin has a strong influence on the accessibility and regulation of genetic information. The locations and occupancies of a principle component of chromatin, nucleosomes, are typically assayed through use of enzymatic digestion with micrococcal nuclease (MNase). MNase is an endo-exo nuclease that preferentially digests naked DNA and the DNA in linkers between nucleosomes, thus enriching for nucleosome-associated DNA. To determine nucleosome organization genome-wide, DNA remaining from MNase digestion is sequenced using high-throughput sequencing technologies (MNase-seq). Unfortunately, the results of MNase-seq can vary dramatically due to technical differences and this confounds comparisons between MNase-seq experiments, such as examining condition-dependent chromatin organizations. RESULTS: In this study we use MNase digestion simulations to demonstrate how MNase-seq signals can vary for different nucleosome configuration when experiments are performed with different extents of MNase digestion. Signal variation in these simulations reveals an important DNA sampling bias that results from a neighborhood effect of MNase digestion techniques. The presence of this neighborhood effect ultimately confounds comparisons between different MNase-seq experiments. To address this issue we present a standardized chromatin preparation which controls for technical variance between MNase-based chromatin preparations and enables the collection of similarly sampled (matched) chromatin populations. Standardized preparation of chromatin includes a normalization step for DNA input into MNase digestions and close matching of the extent of digestion between each chromatin preparation using gel densitometry analysis. The protocol also includes directions for successful pairing with multiplex sequencing reactions. CONCLUSIONS: We validated our method by comparing the experiment-to-experiment variation between biological replicates of chromatin preparations from S. cerevisiae. Results from our matched preparation consistently produced MNase-seq datasets that were more closely correlated than other unstandardized approaches. Additionally, we validated the ability of our approach at enabling accurate downstream comparisons of chromatin structures, by comparing the specificity of detecting Tup1-dependent chromatin remodeling events in comparisons between matched and un-matched wild-type and tup1Δ MNase-seq datasets. Our matched MNase-seq datasets demonstrated a significant reduction in non-specific (technical) differences between experiments and were able to maximize the detection of biologically-relevant (Tup1-dependent) changes in chromatin structure.
Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA/genética , Técnicas Genéticas , Nuclease do Micrococo/metabolismo , Nucleossomos/genética , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genéticaRESUMO
Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, large scale databases of patient-derived samples, like that of TCGA, have been established, giving the ability to interrogate multiple data modalities per tumor. We have developed a computational strategy employing multimodal integration paired with spectral clustering and modern dimension reduction techniques such as PHATE to provide a more robust method for cancer sub-type classification. Using this integrated approach, we have examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA across gene-expression, DNA-methylation, and microbiome data modalities. We show that these approaches, primarily developed for single-cell sequencing can be efficiently applied to bulk tumor sequencing data. Our multimodal analysis captures the dynamic heterogeneity, identifies new and refines subtypes of HNSC, and orders tumor samples along well-defined cellular trajectories. Collectively, these results showcase the inherent molecular complexity of tumors and offer insights into carcinogenesis and importance of targeted therapy. Computational techniques as highlighted in our study provide an organic and powerful approach to identify granular patterns in large and noisy datasets that may otherwise be overlooked.
RESUMO
Determining mutation signatures is standard for understanding the etiology of human tumors and informing cancer treatment. Multiple determinants of DNA replication fidelity prevent mutagenesis that leads to carcinogenesis, including the regulation of free deoxyribonucleoside triphosphate pools by ribonucleotide reductase and repair of replication errors by the mismatch repair system. We identified genetic interactions between rnr1 alleles that skew and/or elevate deoxyribonucleoside triphosphate levels and mismatch repair gene deletions. These defects indicate that the rnr1 alleles lead to increased mutation loads that are normally acted upon by mismatch repair. We then utilized a targeted deep-sequencing approach to determine mutational profiles associated with mismatch repair pathway defects. By combining rnr1 and msh mutations to alter and/or increase deoxyribonucleoside triphosphate levels and alter the mutational load, we uncovered previously unreported specificities of Msh2-Msh3 and Msh2-Msh6. Msh2-Msh3 is uniquely able to direct the repair of G/C single-base deletions in GC runs, while Msh2-Msh6 specifically directs the repair of substitutions that occur at G/C dinucleotides. We also identified broader sequence contexts that influence variant profiles in different genetic backgrounds. Finally, we observed that the mutation profiles in double mutants were not necessarily an additive relationship of mutation profiles in single mutants. Our results have implications for interpreting mutation signatures from human tumors, particularly when mismatch repair is defective.
Assuntos
Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Humanos , Desoxirribonucleosídeos , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Mutação , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Proteínas MutS/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por SubstratoRESUMO
Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.
Assuntos
Células Supressoras Mieloides , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Receptores CCR2/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo , Ligantes , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimiocinas CC/metabolismoRESUMO
Distinct mutation signatures arise from environmental exposures and/or from defects in metabolic pathways that promote genome stability. The presence of a particular mutation signature can therefore predict the underlying mechanism of mutagenesis. These insults to the genome often alter dNTP pools, which itself impacts replication fidelity. Therefore, the impact of altered dNTP pools should be considered when making mechanistic predictions based on mutation signatures. We developed a targeted deep-sequencing approach on the CAN1 gene in Saccharomyces cerevisiae to define information-rich mutational profiles associated with distinct rnr1 backgrounds. Mutations in the activity and selectivity sites of rnr1 lead to elevated and/or unbalanced dNTP levels, which compromises replication fidelity and increases mutation rates. The mutation spectra of rnr1Y285F and rnr1Y285A alleles were characterized previously; our analysis was consistent with this prior work but the sequencing depth achieved in our study allowed a significantly more robust and nuanced computational analysis of the variants observed, generating profiles that integrated information about mutation spectra, position effects, and sequence context. This approach revealed previously unidentified, genotype-specific mutation profiles in the presence of even modest changes in dNTP pools. Furthermore, we identified broader sequence contexts and nucleotide motifs that influenced variant profiles in different rnr1 backgrounds, which allowed specific mechanistic predictions about the impact of altered dNTP pools on replication fidelity.