Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(9): 097001, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721843

RESUMO

We use a hybrid superconductor-semiconductor transmon device to perform spectroscopy of a quantum dot Josephson junction tuned to be in a spin-1/2 ground state with an unpaired quasiparticle. Because of spin-orbit coupling, we resolve two flux-sensitive branches in the transmon spectrum, depending on the spin of the quasiparticle. A finite magnetic field shifts the two branches in energy, favoring one spin state and resulting in the anomalous Josephson effect. We demonstrate the excitation of the direct spin-flip transition using all-electrical control. Manipulation and control of the spin-flip transition enable the future implementation of charging energy protected Andreev spin qubits.

2.
Phys Rev Lett ; 124(24): 246802, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639813

RESUMO

Isolation from the environment determines the extent to which charge is confined on an island, which manifests as Coulomb oscillations, such as charge dispersion. We investigate the charge dispersion of a nanowire transmon hosting a quantum dot in the junction. We observe rapid suppression of the charge dispersion with increasing junction transparency, consistent with the predicted scaling law, which incorporates two branches of the Josephson potential. We find improved qubit coherence times at the point of highest suppression, suggesting novel approaches for building charge-insensitive qubits.

3.
Nat Commun ; 9(1): 904, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500345

RESUMO

The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 105. We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Supercondutividade , Complexos de Proteínas Captadores de Luz/metabolismo , Análise Espectral
4.
Nat Commun ; 9(1): 2323, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884779

RESUMO

The original HTML version of this Article contained an error in the second mathematical expression in the fourth sentence of the fourth paragraph of the 'Excitation transfer with uniform white noise' section of the Results. This has been corrected in the HTML version of the Article.The original PDF version of this Article incorrectly stated that 'Correspondence and requests for materials should be addressed to A. Pcn.', instead of the correct 'Correspondence and requests for materials should be addressed to A. Potocnik'. This has been corrected in the PDF version of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA