Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Structure ; 31(2): 185-200.e10, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586405

RESUMO

The mitochondrial ClpP protease is responsible for mitochondrial protein quality control through specific degradation of proteins involved in several metabolic processes. ClpP overexpression is also required in many cancer cells to eliminate reactive oxygen species (ROS)-damaged proteins and to sustain oncogenesis. Targeting ClpP to dysregulate its function using small-molecule agonists is a recent strategy in cancer therapy. Here, we synthesized imipridone-derived compounds and related chemicals, which we characterized using biochemical, biophysical, and cellular studies. Using X-ray crystallography, we found that these compounds have enhanced binding affinities due to their greater shape and charge complementarity with the surface hydrophobic pockets of ClpP. N-terminome profiling of cancer cells upon treatment with one of these compounds revealed the global proteomic changes that arise and identified the structural motifs preferred for protein cleavage by compound-activated ClpP. Together, our studies provide the structural and molecular basis by which dysregulated ClpP affects cancer cell viability and proliferation.


Assuntos
Mitocôndrias , Proteômica , Mitocôndrias/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteólise
2.
Front Mol Biosci ; 9: 1054408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533084

RESUMO

Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.

3.
Acta Neuropathol Commun ; 9(1): 83, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971978

RESUMO

When injected into genetically modified mice, aggregates of the amyloid-ß (Aß) peptide from the brains of Alzheimer's disease (AD) patients or transgenic AD mouse models seed cerebral Aß deposition in a prion-like fashion. Within the brain, Aß exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aß variants to the seeding behavior of Aß aggregates remains unknown. Here, we have investigated the relative seeding activities of Aß aggregates composed exclusively of recombinant Aß38, Aß40, Aß42, or Aß43. Cerebral Aß42 levels were not increased in AppNL-F knock-in mice injected with Aß38 or Aß40 aggregates and were only increased in a subset of mice injected with Aß42 aggregates. In contrast, significant accumulation of Aß42 was observed in the brains of all mice inoculated with Aß43 aggregates, and the extent of Aß42 induction was comparable to that in mice injected with brain-derived Aß seeds. Mice inoculated with Aß43 aggregates exhibited a distinct pattern of cerebral Aß pathology compared to mice injected with brain-derived Aß aggregates, suggesting that recombinant Aß43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aß C-terminal variants are more potent inducers of cerebral Aß deposition and highlight the potential role of Aß43 seeds as a crucial factor in the initial stages of Aß pathology in AD.


Assuntos
Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Agregados Proteicos/fisiologia , Animais , Sequência de Bases , Encéfalo/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
ACS Infect Dis ; 6(12): 3224-3236, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33237740

RESUMO

Evolving antimicrobial resistance has motivated the search for novel targets and alternative therapies. Caseinolytic protease (ClpP) has emerged as an enticing new target since its function is conserved and essential for bacterial fitness, and because its inhibition or dysregulation leads to bacterial cell death. ClpP protease function controls global protein homeostasis and is, therefore, crucial for the maintenance of the bacterial proteome during growth and infection. Previously, acyldepsipeptides (ADEPs) were discovered to dysregulate ClpP, leading to bactericidal activity against both actively growing and dormant Gram-positive pathogens. Unfortunately, these compounds had very low efficacy against Gram-negative bacteria. Hence, we sought to develop non-ADEP ClpP-targeting compounds with activity against Gram-negative species and called these activators of self-compartmentalizing proteases (ACPs). These ACPs bind and dysregulate ClpP in a manner similar to ADEPs, effectively digesting bacteria from the inside out. Here, we performed further ACP derivatization and testing to improve the efficacy and breadth of coverage of selected ACPs against Gram-negative bacteria. We observed that a diverse collection of Neisseria meningitidis and Neisseria gonorrhoeae clinical isolates were exquisitely sensitive to these ACP analogues. Furthermore, based on the ACP-ClpP cocrystal structure solved here, we demonstrate that ACPs could be designed to be species specific. This validates the feasibility of drug-based targeting of ClpP in Gram-negative bacteria.


Assuntos
Antibacterianos , Depsipeptídeos , Peptídeo Hidrolases , Antibacterianos/farmacologia , Bactérias , Depsipeptídeos/farmacologia , Bactérias Gram-Negativas
5.
Commun Biol ; 2: 410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754640

RESUMO

Bacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in Neisseria meningitidis and Escherichia coli ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering. ACP1 and ADEP induce distinct conformational changes in the ClpP structure. However, reorganization of electrostatic interaction networks at the ClpP entrance pores is necessary and sufficient for activation. Further activation is achieved by formation of ordered N-terminal axial loops and reduction in the structural heterogeneity of the ClpP cylinder. Activating mutations recapitulate the structural effects of small molecule activator binding. Our data, together with previous findings, provide a structural basis for a unified mechanism of compound-based ClpP activation.


Assuntos
Endopeptidase Clp/química , Modelos Moleculares , Eletricidade Estática , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Endopeptidase Clp/metabolismo , Ativação Enzimática , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Tirosina Fosfatases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA