RESUMO
To date, the potential exploitation of hybrid organic-inorganic perovskites (HOIPs) in photovoltaic technologies has been significantly hampered by their poor environmental stability. HOIP degradation can be triggered by conventional operational environments, with excessive heating and exposure to oxygen and moisture significantly reducing the performances of HOIP-based solar cells. An imperative need emerges for a thorough investigation on the impact of these factors on the HOIP stability. In this work, the degradation of methylammonium lead bromide (CH3NH3PbBr3) thin films, deposited via spin-coating on indium tin oxide (ITO) and strontium titanate (STO) substrates, was investigated by combining Raman and ultraviolet-visible (UV-Vis) absorption spectroscopy, as well as optical and fluorescence microscopy. We assessed the physical and chemical degradation of the films occurring under diverse preservation conditions, shedding light on the byproducts emerging from different degradation pathways and on the optimal HOIP preservation conditions.
RESUMO
A gold nanoparticles transparent electrode was realized by chemical reduction. This work aims to compare the transparent gold nanoparticles electrode with a more commonly utilized gold-film-coated electrode in order to investigate its potential use as counter-electrode (CE) in dye-sensitized solar cells (DSSCs). A series of DSSC devices, utilizing I-/I3- and Co(III)/(II) polypyridine redox mediators [Co(dtb)3]3+/2+; dtb = 4,4'ditert-butyl-2,2'-bipyridine)], were evaluated. The investigation focused firstly on the structural characterization of the deposited gold layers and then on the electrochemical study. The novelty of the work is the realization of a gold nanoparticles CE that reached 80% of average visible transmittance. We finally examined the performance of the transparent gold nanoparticles CE in DSSC devices. A maximum power conversion efficiency (PCE) of 4.56% was obtained with a commercial I-/I3--based electrolyte, while a maximum 3.1% of PCE was obtained with the homemade Co-based electrolyte.
RESUMO
Transparent photovoltaics for building integration represent a promising approach for renewable energy deployment. These devices require transparent electrodes to manage transmittance and to ensure proper cell operation. In this study, transparent FAPbBr3-based perovskite solar cells optimized via a passivation treatment were demonstrated with average visible transmittance values above 60% and light utilization efficiencies up to 5.0%. Experiments under varying ultraviolet (UV) irradiance intensities from both front and rear directions revealed performance differences correlated with diffusion-limited transport and open-circuit voltage changes. Combining the UV-radiated experiments and drift-diffusion simulations, an asymmetry between the diffusion lengths of electrons and holes in the perovskite is revealed, with estimated values resulting in less than 50 nm and more than 99 nm, respectively. Our methods not only identify electron-hole diffusion length differences but also introduce a general protocol for characterizing solar cells with transparent electrodes.
RESUMO
Perovskite solar cells (PSCs) offer impressive performance and flexibility, thanks to their simple, low-temperature deposition methods. Their band gap tunability allows for a wide range of applications, transitioning from opaque to transparent devices. This study introduces the first flexible, bifacial PSCs using the FAPbBr3 perovskite. We investigated the impact of optimizing electron and hole transport layers on the cells' bifaciality, transparency, and stability. PSCs achieved a maximum power conversion efficiency (PCE) of 6.8 and 18.7% under 1 sun and indoor light conditions (1200 lx), respectively, showing up to 98% bifaciality factor and an average visible transmittance (AVT) of 55%. Additionally, a P1-P2-P3 laser ablation scheme has been developed on the flexible poly(ethylene terephthalate) (PET) substrate for perovskite solar modules showing a PCE of 4.8% and high geometrical fill factor (97.8%). These findings highlight the potential of flexible, bifacial PSCs for diverse applications such as building-integrated photovoltaics (BIPV), agrivoltaics, automotive technology, wearable sensors, and Internet of things (IoT).
RESUMO
Perovskite solar cells promise to be part of the future portfolio of photovoltaic technologies, but their instability is slow down their commercialization. Major stability assessments have been recently achieved but reliable accelerated ageing tests on beyond small-area cells are still poor. Here, we report an industrial encapsulation process based on the lamination of highly viscoelastic semi-solid/highly viscous liquid adhesive atop the perovskite solar cells and modules. Our encapsulant reduces the thermomechanical stresses at the encapsulant/rear electrode interface. The addition of thermally conductive two-dimensional hexagonal boron nitride into the polymeric matrix improves the barrier and thermal management properties of the encapsulant. Without any edge sealant, encapsulated devices withstood multifaceted accelerated ageing tests, retaining >80% of their initial efficiency. Our encapsulation is applicable to the most established cell configurations (direct/inverted, mesoscopic/planar), even with temperature-sensitive materials, and extended to semi-transparent cells for building-integrated photovoltaics and Internet of Things systems.
RESUMO
Hybrid organic-inorganic perovskites (HOIPs) have attracted considerable attention in the past years as photoactive materials for low-cost, high-performance photovoltaics. Polaron formation through electron-phonon coupling has been recognized as the leading mechanism governing charge carrier transport and recombination in HOIPs. In this work, two types of MAPbBr3 film samples deposited on different substrates (transparent insulating SrTiO3 and a heterostructure mimicking a functioning photovoltaic cell) were photoexcited with above-bandgap radiation at 450 nm, and the effects of illumination on the sample were analyzed in the infrared region. The infrared absorbance detected at different powers of the photoexciting laser allowed us to obtain an estimate of the characteristic decay time of photoexcited polaron population of the order of 100-1000 ns. When focusing on the absorption features of the MA molecular cation in the region of the NH stretching modes, we observed the influence of hydrogen bonding and the effect of the polaron dynamics on the cation reorientation.
RESUMO
The extensive use of perovskites as light absorbers calls for a deeper understanding of the interaction of these materials with light. Here, the evolution of the chemical and optoelectronic properties of formamidinium lead tri-bromide (FAPbBr3 ) films is tracked under the soft X-ray beam of a high-brilliance synchrotron source by photoemission spectroscopy and micro-photoluminescence. Two contrasting processes are at play during the irradiation. The degradation of the material manifests with the formation of Pb0 metallic clusters, loss of gaseous Br2 , decrease and shift of the photoluminescence emission. The recovery of the photoluminescence signal for prolonged beam exposure times is ascribed to self-healing of FAPbBr3 , thanks to the re-oxidation of Pb0 and migration of FA+ and Br- ions. This scenario is validated on FAPbBr3 films treated by Ar+ ion sputtering. The degradation/self-healing effect, which is previously reported for irradiation up to the ultraviolet regime, has the potential of extending the lifetime of X-ray detectors based on perovskites.
RESUMO
An optimization work on dye-sensitized solar cells (DSSCs) based on both artificial and natural dyes was carried out by a fine synthesis work embedding gold nanoparticles in a TiO2 semiconductor and perfecting the TiO2 particle sizes of the scattering layer. Noble metal nanostructures are known for the surface plasmon resonance peculiarity that reveals unique properties and has been implemented in several fields such as sensing, photocatalysis, optical antennas and PV devices. By embedding gold nanoparticles in the mesoporous TiO2 layer and adding a scattering layer, we were able to boost the power conversion efficiency (PCE) to 10.8%, using an organic ruthenium complex. The same implementation was carried out using a natural dye, betalains, extracted from Sicilian prickly pear. In this case, the conversion efficiency doubled from 1 to 2% (measured at 1 SUN illumination, 100 mW/cm2 under solar simulation irradiation). Moreover, we obtained (measured at 0.1 SUN, 10 mW/cm2 under blue light LED irradiation) a record efficiency of 15% with the betalain-based dye, paving the way for indoor applications in organic natural devices. Finally, an attempt to scale up the system is shown, and a betalain-based- dye-sensitized solar module (DSSM), with an active area of 43.2 cm2 and a PCE of 1.02%, was fabricated for the first time.
RESUMO
In this study, two boronic acid BODIPYs are obtained through a microwave-assisted Knoevenagel reaction. The aim is to use them for the first time as dyes in a photosensitized solar cell (DSSC) to mimic chlorophyll photosynthesis, harvesting solar light and converting it into electricity. The microwave-assisted Knoevenagel reaction is a straightforward approach to extending the molecular conjugation of the dye and is applied for the first time to synthesize BODIPY's boronic acid derivatives. These derivatives have proved to be very useful for covalent deposition on titania. This work studies the photo-physical and electrochemical properties. Moreover, the photovoltaic performances of these two new dyes as sensitizers for DSSC are discussed. Experimental data show that both dyes exhibit photosensitizing activities in acetonitrile and water. In particular, in all the experiments, distyryl BODIPY was more efficient than styryl BODIPY. In this study, demonstrating the use of a natural component as a water-based electrolyte for boronic BODIPY sensitizers, we open new possibilities for the development of water-based solar cells.
RESUMO
Organic-inorganic lead halide perovskite has recently emerged as an efficient absorber material for solution process photovoltaic (PV) technology, with certified efficiency exceeding 25%. The development of low-temperature (LT) processing is a challenging topic for decreasing the energy payback time of perovskite solar cell (PSC) technology. In this context, the LT planar n-i-p architecture meets all the requirements in terms of efficiency, scalability, and processability. However, the long-term stability of the LT planar PSC under heat and moisture stress conditions has not been carefully assessed. Here, a detailed study on thermal and moisture stability of large-area (1 cm2) LT planar PSCs is presented. In particular, the key role in thermal stability of potassium iodide (KI) insertion in the perovskite composition is demonstrated. It is found that defect passivation of triple-cation perovskite by KI doping inhibits the halide migration induced by thermal stress at 85 °C and delays the formation of degradation subproducts. T80, defined as the time when the cell retains 80% of initial efficiency, is evaluated both for reference undoped devices and KI-doped ones. The results show that T80 increases 3 times when KI doping is used. Moreover, an HTL-free architecture where the Au top electrode is replaced with low-T screen-printable carbon paste is proposed. The combination of the carbon-based HTL-free architecture and KI-doped perovskite permits T80 to increase from 40 to 414 h in unsealed devices.