Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37518952

RESUMO

Protein unfolding and aggregation are often correlated with numerous diseases such as Alzheimer's, Parkinson's, Huntington's, and other debilitating neurological disorders. Such adverse events consist of a plethora of competing mechanisms, particularly interactions that control the stability and cooperativity of the process. However, it remains challenging to probe the molecular mechanism of protein dynamics such as aggregation, and monitor them in real-time under physiological conditions. Recently, Raman spectroscopy and its plasmon-enhanced counterparts, such as surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), have emerged as sensitive analytical tools that have the potential to perform molecular studies of functional groups and are showing significant promise in probing events related to protein aggregation. We summarize the fundamental working principles of Raman, SERS, and TERS as nondestructive, easy-to-perform, and fast tools for probing protein dynamics and aggregation. Finally, we highlight the utility of these techniques for the analysis of vibrational spectra of aggregation of proteins from various sources such as tissues, pathogens, food, biopharmaceuticals, and lastly, biological fouling to retrieve precise chemical information, which can be potentially translated to practical applications and point-of-care (PoC) devices. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Nanotecnologia , Análise Espectral Raman , Análise Espectral Raman/métodos , Nanotecnologia/métodos
2.
Dalton Trans ; 53(18): 8020-8032, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651992

RESUMO

Mn-doped Bi3O4Br has been synthesized using a solvothermal route. The undoped Bi3O4Br and Mn-Bi3O4Br materials possess orthorhombic unit cells with two distinct Bi sites forming a layered atomic arrangement. The shift in the (020) plane in the powder X-ray diffraction (PXRD) pattern confirms Mn-doping in the Bi3O4Br lattice. Elemental mapping indicated 7% Mn doping in the Bi3O4Br lattice structure. A core-level X-ray photoelectron study (XPS) indicates the presence of BiIII and MnII valence-states in Mn-Bi3O4Br. Doping with a cation (MnII) containing a different charge and ionic radius resulted in vacancy/defects in Mn-Bi3O4Br which further altered its electronic structure by reducing the indirect band gap, beneficial for electron conduction and electrocatalysis. The irreversible MnII to MnIII transformation at a potential of 1.48 V (vs. RHE) precedes the electrochemical oxygen evolution reaction (OER). The Mn-doped electrocatalyst achieved 10 mA cm-2 current density at 337 mV overpotential, while the pristine Bi3O4Br required 385 mV overpotential to reach the same activity. The pronounced OER activity of the Mn-Bi3O4Br sample over the pristine Bi3O4Br highlights the necessity of MnII doping. The superior activity of the Mn-Bi3O4Br catalyst over that of Bi3O4Br is due to a low Tafel slope, better double-layer capacitance (Cdl), and small charge-transfer resistance (Rct). The chronoamperometry (CA) study depicts long-term stability for 12 h at 20 mA cm-2. An electrolyzer fabricated as Pt(-)/(+)Mn-Bi3O4Br can deliver 10 mA cm-2 at a cell potential of 2.05 V. The post-CA-OER analyses of the anode confirmed the leaching of [Br-] followed by in situ formation of Mn-doped Bi2O3 as the electrocatalytically active species. Herein, an ultra-low Mn-doping into Bi3O4Br leads to an improvement in the electrocatalytic performance of the inactive Bi3O4Br material.

3.
Nanoscale ; 16(24): 11749-11761, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38864278

RESUMO

The formation of clusters in non-aromatic molecules can give rise to unconventional luminescence or clusteroluminescence. Typically containing heteroatoms without extended conjugation or aromatic rings, these molecules have drawn much attention owing to the prospects of label-free biological imaging. However, their applications have been limited due to the lack of knowledge of the underlying mechanism. Herein, we have elucidated the mechanism of clusteroluminescence from proteins, which were explicitly aggregated using plasmonic silver nanoparticles. The nanoparticles promoted protein aggregation and induced nitrile formation on the surface, which, along with other lone-pair-containing heteroatoms, contributed to enhanced emission in the visible range. Remarkably, this makes imaging of proteins possible with visible excitations, as co-factor-lacking proteins generally undergo electronic transitions only in the ultraviolet range. Furthermore, the inherent protein-aggregating behaviour of plasmonic nanoparticles was harnessed for imaging of intracellular Huntingtin protein aggregates overexpressed in HeLa cells through clusteroluminescence. Significant plasmon-enhanced and red-shifted fluorescence emission was observed, which helped in the imaging and localization of the intracellular aggregates. Density functional theory calculations and transient absorbance spectroscopy were used to probe the molecular interactions at the protein-nanoparticle interface and the charge transfer states, further elucidating the role of nanoparticles and the emission mechanism. This technique thus opens alternate avenues for label-free fluorescence bioimaging.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Células HeLa , Nanopartículas Metálicas/química , Prata/química , Agregados Proteicos , Luminescência , Medições Luminescentes
4.
RSC Adv ; 10(42): 25073-25088, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517440

RESUMO

This report presents the superior visible-light-driven photocatalytic response of novel 2D/2D BiOCl/WS2 (BW X ) hybrid nanosheet heterojunctions prepared by a simple solution based sonochemical technique. These BW X hybrid nanosheets are composed of 2D transition metal dichalcogenide material WS2 and BiOCl nanosheets. The comparative study of photocatalytic activity of BiOCl and BiOCl/WS2 hybrid nanosheets is carried out via photodegradation of Malachite Green (MG) and photoreduction of heavy metal ion Cr(vi) under visible light irradiation. The quantum efficiency of the samples is estimated in terms of the incident photon to electron conversion efficiency (IPCE) measurements. Nearly 98.4% of the MG degradation was achieved over BiOCl/WS2 (2%) photocatalyst in 45 min of irradiation. BiOCl/WS2 (2%) hybrid nanosheet catalyst showed the highest external quantum efficiency (EQE) in both the UV and visible regimes. This accomplishment demonstrated the promise of commercial application of the 2D/2D BiOCl/WS2 (2%) hybrid nanosheet photocatalyst.

5.
J Vis Exp ; (152)2019 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-31633699

RESUMO

Developing photocatalytic H2 production devices is the one of the key steps for constructing a global H2-based renewable energy infrastructure. A number of photoactive assemblies have emerged where a photosensitizer and cobaloxime-based H2 production catalysts work in tandem to convert light energy into the H-H chemical bonds. However, the long-term instability of these assemblies and the need for hazardous proton sources have limited their usage. Here, in this work, we have integrated a stilbene-based organic dye into the periphery of a cobaloxime core via a distinct axial pyridine linkage. This strategy allowed us to develop a photosensitizer-catalyst hybrid structure with the same molecular framework. In this article, we have explained the detailed procedure of the synthesis of this hybrid molecule in addition to its comprehensive chemical characterization. The structural and optical studies have exhibited an intense electronic interaction between the cobaloxime core and the organic photosensitizer. The cobaloxime was active for H2 production even in the presence of water as the proton source. Here, we have developed a simple airtight system connected with an online H2 detector for the investigation of the photocatalytic activity by this hybrid complex. This photosensitizer-catalyst dyad present in the experimental setup continuously produced H2 once it was exposed in the natural sunlight. This photocatalytic H2 production by the hybrid complex was observed in aqueous/organic mixture media in the presence of a sacrificial electron donor under complete aerobic conditions. Thus, this photocatalysis measurement system along with the photosensitizer-catalyst dyad provide valuable insight for the development of next generation photocatalytic H2 production devices.


Assuntos
Conservação de Recursos Energéticos/métodos , Hidrogênio/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Água/química , Catálise , Prótons , Piridinas/química , Estilbenos/química , Luz Solar
6.
Eur J Med Chem ; 71: 81-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24287556

RESUMO

A library of hydrazide derivatives was synthesized to target non-structural protein 1 of influenza A virus (NS1) as a means to develop anti-influenza drug leads. The lead compound 3-hydroxy-N-[(Z)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethylideneamino]naphthalene-2-carboxamide, which we denoted as "HENC", was identified by its ability to increase the melting temperature of the effector domain (ED) of the NS1 protein, as assayed using differential scanning fluorimetry. A library of HENC analogs was tested for inhibitory effect against influenza A virus replication in MDCK cells. A systematic diversification of HENC revealed the identity of the R group attached to the imine carbon atom significantly influenced the antiviral activity. A phenyl or cyclohexyl at this position yielded the most potent antiviral activity. The phenyl containing compound had antiviral activity similar to that of the active form of oseltamivir (Tamiflu), and had no detectable effect on cell viability.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hidrazinas/química , Hidrazinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Linhagem Celular , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA