RESUMO
We experimentally study the interaction between intense infrared few-cycle laser pulses and an ultrathin (â¼2 µm) flat liquid sheet of isopropanol running in vacuum. We observe a rapid decline in transmission above a critical peak intensity of 50 TW/cm2 of the initially transparent liquid sheet, and the emission of a plume of material. We find both events are due to the creation of a surface plasma and are similar to processes observed in dielectric solids. After calculating the electron density for different laser peak intensities, we find an electron scattering rate of 0.3 fs-1 in liquid isopropanol to be consistent with our data. We study the dynamics of the plasma plume to find the expansion velocity of the plume front.
RESUMO
We report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states. Thus, the wavepacket is impulsively created at a specific atomic site within a few hundred attoseconds through a nonlinear interaction between the water and the x-ray pulse. We observe this nonlinear signature in an intensity-dependent Stokes Raman sideband at 526 eV. Our measurements are supported by our state-of-the-art calculations based on the polarization response of water dimers in bulk solvation and propagation of attosecond x-ray pulses at liquid density.
RESUMO
The development of ultra-thin flat liquid sheets capable of running in vacuum has provided an exciting new target for X-ray absorption spectroscopy in the liquid and solution phases. Several methods have become available for delivering in-vacuum sheet jets using different nozzle designs. We compare the sheets produced by two different types of nozzle; a commercially available borosillicate glass chip using microfluidic channels to deliver colliding jets, and an in-house fabricated fan spray nozzle which compresses the liquid on an axis out of a slit to achieve collision conditions. We find in our tests that both nozzles are suitable for use in X-ray absorption spectroscopy with the fan spray nozzle producing thicker but more stable jets than the commercial nozzle. We also provide practical details of how to run these nozzles in vacuum.
RESUMO
In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.
RESUMO
Thin liquid sheet jet flows in vacuum provide a new platform for performing experiments in the liquid phase, for example X-ray spectroscopy. Micrometer thickness, high stability, and optical flatness are the key characteristics required for successful exploitation of these targets. A novel strategy for generating sheet jets in vacuum is presented in this article. Precision nozzles were designed and fabricated using high resolution (0.2 µm) 2-photon 3D printing and generated 1.49 ± 0.04 µm thickness, stable, and <λ/20-flat jets in isopropanol under normal atmosphere and under vacuum at 5 × 10-1 mbar. The thin sheet technology also holds great promise for advancing the fields of high harmonic generation in liquids, laser acceleration of ions as well as other fields requiring precision and high repetition rate targets.