Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901898

RESUMO

Most breast cancer heritability is unexplained. We hypothesized that analysis of unrelated familial cases in a GWAS context could enable the identification of novel susceptibility loci. In order to examine the association of a haplotype with breast cancer risk, we performed a genome-wide haplotype association study using a sliding window analysis of window sizes 1-25 SNPs in 650 familial invasive breast cancer cases and 5021 controls. We identified five novel risk loci on 9p24.3 (OR 3.4; p 4.9 × 10-11), 11q22.3 (OR 2.4; p 5.2 × 10-9), 15q11.2 (OR 3.6; p 2.3 × 10-8), 16q24.1 (OR 3; p 3 × 10-8) and Xq21.31 (OR 3.3; p 1.7 × 10-8) and confirmed three well-known loci on 10q25.13, 11q13.3, and 16q12.1. In total, 1593 significant risk haplotypes and 39 risk SNPs were distributed on the eight loci. In comparison with unselected breast cancer cases from a previous study, the OR was increased in the familial analysis in all eight loci. Analyzing familial cancer cases and controls enabled the identification of novel breast cancer susceptibility loci.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Haplótipos , Predisposição Genética para Doença , Suécia , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles
2.
Cancers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267517

RESUMO

(1) Background: The heritability of breast cancer is partly explained but much of the genetic contribution remains to be identified. Haplotypes are often used as markers of ethnicity as they are preserved through generations. We have previously demonstrated that haplotype analysis, in addition to standard SNP association studies, could give novel and more detailed information on genetic cancer susceptibility. (2) Methods: In order to examine the association of a SNP or a haplotype to breast cancer risk, we performed a genome wide haplotype association study, using sliding window analysis of window sizes 1−25 and 50 SNPs, in 3200 Swedish breast cancer cases and 5021 controls. (3) Results: We identified a novel breast cancer susceptibility locus in 8p21.1 (OR 2.08; p 3.92 × 10−8), confirmed three known loci in 10q26.13, 11q13.3, 16q12.1-2 and further identified novel subloci within these three loci. Altogether 76 risk SNPs, 3302 risk haplotypes of window size 2−25 and 113 risk haplotypes of window size 50 at p < 5 × 10−8 on chromosomes 8, 10, 11 and 16 were identified. In the known loci haplotype analysis reached an OR of 1.48 in overall breast cancer and in familial cases OR 1.68. (4) Conclusions: Analyzing haplotypes, rather than single variants, could detect novel susceptibility loci even in small study populations but the method requires a fairly homogenous study population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA