Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(3): 031101, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386438

RESUMO

The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/sqrt[Hz] at Fourier frequencies above 100 mHz.

2.
Opt Express ; 25(7): 7999-8010, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380922

RESUMO

A photoreceiver (PR) is required for the opto-electrical conversion of signals in intersatellite laser interferometers. Noise sources that originate or couple in the PR reduce the system carrier-to-noise-density, which is often represented by its phase noise density. In this work, we analyze the common noise sources in a PR used for space-based interferometry. Additionally, we present the results from the characterization of the PRs in GRACE-FO, a mission which will pioneer intersatellite laser interferometry. The estimated phase noise is shot-noise limited at 10-4 rad/Hz1/2 down to 10-2 Hz, almost 4 orders of magnitude below the instrument top level requirement (0.5 rad/Hz1/2). Below 10-2 Hz, the PR finite phase response noise dominates but the levels still comply with the instrument requirement. The sub-mHz noise levels and the PR electronic noise have been identified as key design factors for the LISA PR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA