Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10848-10855, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967849

RESUMO

In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS2 covering a gold disk. We demonstrate that the nonresonant excitation of the gold disk in the high absorption regime efficiently generates hot carriers via localized surface plasmon excitation, which n-dope the monolayer WS2 and enhance the photoluminescence emission by regulating the multiexciton population and stabilizing the neutral exciton emission. The results are relevant to the further development of nanotransistors in photonic circuits and optoelectronic applications.

2.
Opt Express ; 31(2): 3364-3378, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785331

RESUMO

Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates. We show that an aluminum substrate can decrease the lasing threshold for ZnO nanowire lasers while for a silver substrate, the threshold increases compared with a dielectric substrate. Generalizing from these findings, we make predictions describing the interaction between planar metals and semiconductor nanowires, which allow to guide future improvements of highly-integrated laser sources.

3.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361573

RESUMO

High refractive index dielectric (HRID) nanoparticles are a clear alternative to metals in nanophotonic applications due to their low losses and directional scattering properties. It has been demonstrated that HRID dimers are more efficient scattering units than single nanoparticles in redirecting the incident radiation towards the forward direction. This effect was recently reported and is known as the "near zero-backward" scattering condition, attained when nanoparticles forming dimers strongly interact with each other. Here, we analyzed the electromagnetic response of HRID isolated nanoparticles and aggregates when deposited on monolayer and graded-index multilayer dielectric substrates. In particular, we studied the fraction of radiation that is scattered towards a substrate with known optical properties when the nanoparticles are located on its surface. We demonstrated that HRID dimers can increase the radiation emitted towards the substrate compared to that of isolated nanoparticles. However, this effect was only present for low values of the substrate refractive index. With the aim of observing the same effect for silicon substrates, we show that it is necessary to use a multilayer antireflection coating. We conclude that dimers of HRID nanoparticles on a graded-index multilayer substrate can increase the radiation scattered into a silicon photovoltaic wafer. The results in this work can be applied to the design of novel solar cells.

4.
Opt Lett ; 45(18): 5238-5241, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932500

RESUMO

In this work, we study the dispersive coupling between optical quasi-bound states in the continuum at telecom wavelengths and GHz-mechanical modes in high-index wavelength-sized disks. We show that such cavities can display values of the optomechanical coupling rate on par with optomechanical crystal cavities (g0/2π≃800kHz). Interestingly, optomechanical coupling of optical resonances with mechanical modes at frequencies well above 10 GHz seems attainable. We also show that mechanical leakage in the substrate can be extremely reduced by placing the disk over a thin silica pedestal. Our results suggest a new route for ultra-compact optomechanical cavities that can potentially be arranged in massive arrays forming optomechanical metasurfaces for application in signal processing or sensing.

5.
Nanotechnology ; 27(23): 234002, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27138445

RESUMO

The influence of increasing the core size of Ag-Si core-shell nanoparticles has been investigated by using the values of the linear polarization degree at a right-angle scattering configuration, [Formula: see text]. Changes in dipolar resonances and scattering directionality conditions as a function of the core radius (R int) for a fixed shell size ([Formula: see text] nm) have been analysed. An empirical formula to obtain the ratio [Formula: see text] by monitoring the influence of the magnetic dipolar resonance in [Formula: see text] has been found. The effect of the refractive index of the surrounding medium, m med, in the zero backward and almost-zero forward scattering conditions has also been studied. We have weighed up the sensitivity of [Formula: see text] to m med. It has been demonstrated that multipolar contributions strongly influence [Formula: see text]. This influence can be used as a fast m med estimate. In all cases, the results show that the bigger the cores, the higher the sensitivity to m med.

6.
Opt Express ; 23(7): 9157-66, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968750

RESUMO

The spectral evolution of the degree of linear polarization (PL) at a scattering angle of 90° is studied numerically for high refractive index (HRI) dielectric spherical nanoparticles. The behaviour of PL(90°) is analysed as a function of the refractive index of the surrounding medium and the particle radius, and it is compared with the more conventional extinction efficiency parameter (Qext), usually used for sensing applications. We focus on the spectral region where both electric and magnetic resonances of order not higher than two are located for various semiconductor materials with low absorption. Although both Qext and PL(90°) are identifiers of the refractive index of the surrounding medium, the spectral of PL(90°) has only a small, linear dependence on nanoparticle size R. This weak dependence makes it experimentally feasible to perform real-time retrievals of both the refractive index of the external medium and the NP size R.

7.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

8.
Nanomaterials (Basel) ; 13(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38063724

RESUMO

Thanks to their long lifetime, spin-forbidden dark excitons in transition metal dichalcogenides are promising candidates for storage applications in opto-electronics and valleytronics. To date, their study has been hindered by inefficient generation mechanisms and the necessity for elaborate detection schemes. In this work, we propose a new hybrid platform that simultaneously addresses both challenges. We study an all-dielectric metasurface with two symmetrically protected quasi-bound states in the continuum to enhance both the excitation and emission of dark excitons in a tungsten diselenide monolayer under normal light incidence. Our simulations show a giant photoluminescence signal enhancement (∼520) along with directional emission, thus offering distinct advantages for opto-electronic and valleytronic devices.

9.
ACS Photonics ; 10(3): 707-714, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942156

RESUMO

Far-field scattering of high-index nanoparticles can be hugely reduced via interference of multipolar moments giving rise to the so-called anapole states. It has been suggested that this reduced scattering can contribute to efficient transmission along periodic chains of such nanoparticles. In this work, we analyze via numerical simulation and experiments the transmission of light along chains of regular and slotted silicon disks in the frequency region over the light cone. We do not observe transmission at wavelengths corresponding to the excitation of the first electric anapole for regular disks. However, large transmission along straight and curved chains is observed for slotted disks due to the simultaneous excitation of the toroidal dipole and magnetic quadrupole modes in the disks. Photonic band calculations unveil that such large transmission can be ascribed to leaky resonances, though bound states in the continuum do not appear in the structures under analysis. Experiments at telecom wavelengths using silicon disk chains confirm the numerical results for straight and bent chains. Our results provide new insights into the role of radiationless states in light guidance along nanoparticle chains and offer new avenues to utilize Mie resonances of simple nanophotonic structures for on-chip dielectric photonics.

10.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299713

RESUMO

The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the Q-factor with gradual heating. A gradual increment in temperature leads to a spectral shift in the resonance wavelength. With the support of ellipsometry measurements, the spectral shift resulting from the short-duration (ten minutes) heating is identified to be due to refractive index variations in the material rather than a geometric effect or amorphous/polycrystalline phase transition. In the case of quasi-BIC modes in the near-infrared, resonance wavelength could be adjusted from T = 350 °C to T = 550 °C without affecting the Q-factor considerably. Apart from the temperature-induced resonance trimming, large Q-factors can be attained at the highest analyzed temperature (T = 700 °C) in the near-infrared quasi-BIC modes. Resonance tailoring is just one of the possible applications of our results. We expect that our study is also insightful in the design of a-Si:H metasurfaces where large Q-factors are required at high temperatures.

11.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432392

RESUMO

In this paper, we propose the design of an optical system based on two parallel suspended silicon nanowires that support a range of optical resonances that efficiently confine and scatter light in the infrared range as the base of an all-optical displacement sensor. The effects of the variation of the distance between the nanowires are analyzed. The simulation models are designed by COMSOL Multiphysics software, which is based on the finite element method. The diameter of the nanocylinders (d = 140 nm) was previously optimized to achieve resonances at the operating wavelengths (λ = 1064 nm and 1310 nm). The results pointed out that a detectable change in their resonant behavior and optical interaction was achieved. The proposed design aims to use a simple light source using a commercial diode laser and simplify the readout systems with a high sensitivity of 1.1 × 106 V/m2 and 1.14 × 106 V/m2 at 1064 nm and 1310 nm, respectively. The results may provide an opportunity to investigate alternative designs of displacement sensors from an all-optical approach and explore their potential use.

12.
Light Sci Appl ; 10(1): 204, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608131

RESUMO

High-index nanoparticles are known to support radiationless states called anapoles, where dipolar and toroidal moments interfere to inhibit scattering to the far field. In order to exploit the striking properties arising from these interference conditions in photonic integrated circuits, the particles must be driven in-plane via integrated waveguides. Here, we address the excitation of electric anapole states in silicon disks when excited on-chip at telecom wavelengths. In contrast to normal illumination, we find that the anapole condition-identified by a strong reduction of the scattering-does not overlap with the near-field energy maximum, an observation attributed to retardation effects. We experimentally verify the two distinct spectral regions in individual disks illuminated in-plane from closely placed waveguide terminations via far-field and near-field measurements. Our finding has important consequences concerning the use of anapole states and interference effects of other Mie-type resonances in high-index nanoparticles for building complex photonic integrated circuitry.

13.
Science ; 374(6572): 1264-1267, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855500

RESUMO

Coherent upconversion of terahertz and mid-infrared signals into visible light opens new horizons for spectroscopy, imaging, and sensing but represents a challenge for conventional nonlinear optics. Here, we used a plasmonic nanocavity hosting a few hundred molecules to demonstrate optomechanical transduction of submicrowatt continuous-wave signals from the mid-infrared (32 terahertz) onto the visible domain at ambient conditions. The incoming field resonantly drives a collective molecular vibration, which imprints a coherent modulation on a visible pump laser and results in upconverted Raman sidebands with subnatural linewidth. Our dual-band nanocavity offers an estimated 13 orders of magnitude enhancement in upconversion efficiency per molecule. Our results demonstrate that molecular cavity optomechanics is a flexible paradigm for frequency conversion leveraging tailorable molecular and plasmonic properties.

14.
Sci Rep ; 9(1): 16048, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690724

RESUMO

Bound states in the continuum (BICs) are ubiquitous in many areas of physics, attracting special interest for their ability to confine waves with infinite lifetimes. Metasurfaces provide a suitable platform to realize them in photonics; such BICs are remarkably robust, being however complex to tune in frequency-wavevector space. Here we propose a scheme to engineer BICs and quasi-BICs with single magnetic-dipole resonance meta-atoms. Upon changing the orientation of the magnetic-dipole resonances, we show that the resulting quasi-BICs, emerging from the symmetry-protected BIC at normal incidence, become transparent for plane-wave illumination exactly at the magnetic-dipole angle, due to a Brewster-like effect. While yielding infinite Q-factors at normal incidence (canonical BIC), these are termed Brewster quasi-BICs since a transmission channel is always allowed that slightly widens resonances at oblique incidences. This is demonstrated experimentally through reflectance measurements in the microwave regime with high-refractive-index mm-disk metasurfaces. Such Brewster-inspired configuration is a plausible scenario to achieve quasi-BICs throughout the electromagnetic spectrum inaccessible through plane-wave illumination at given angles, which could be extrapolated to other kind of waves.

15.
Sci Rep ; 8(1): 7976, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789610

RESUMO

Low-losses and directionality effects exhibited by High Refractive Index Dielectric particles make them attractive for applications where radiation direction control is relevant. For instance, isolated metallo-dielectric core-shell particles or aggregates (dimers) of High Refractive Index Dielectric particles have been proposed for building operational switching devices. Also, the possibility of using isolated High Refractive Index Dielectric particles for optimizing solar cells performance has been explored. Here, we present experimental evidence in the microwave range, that a High Refractive Index Dielectric dimer of spherical particles is more efficient for redirecting the incident radiation in the forward direction than the isolated case. In fact, we report two spectral regions in the dipolar spectral range where the incident intensity is mostly scattered in the forward direction. They correspond to the Zero-Backward condition (also observed for isolated particles) and to a new condition, denoted as "near Zero-Backward" condition, which comes from the interaction effects between the particles. The proposed configuration has implications in solar energy harvesting devices and in radiation guiding.

16.
Sci Rep ; 7(1): 11189, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894230

RESUMO

High Refractive Index (HRI) dielectric nanoparticles have been proposed as an alternative to metallic ones due to their low absorption and magnetodielectric response in the VIS and NIR ranges. For the latter, important scattering directionality effects can be obtained. Also, systems constituted by dimers of HRI dielectric nanoparticles have shown to produce switching effects by playing with the polarization, frequency or intensity of the incident radiation. Here, we show that scattering directionality effects can be achieved with a single eccentric metallo-HRI dielectric core-shell nanoparticle. As an example, the effect of the metallic core displacements for a single Ag-Si core-shell nanoparticle has been analyzed. We report rotation of the main scattering lobe either clockwise or counterclockwise depending on the polarization of the incident radiation leading to new scattering configurations for switching purposes. Also, the efficiency of the scattering directionality can be enhanced. Finally, chains of these scattering units have shown good radiation guiding effects, and for 1D periodic arrays, redirection of diffracted intensity can be observed as a consequence of blazing effects. The proposed scattering units constitute new blocks for building systems for optical communications, solar energy harvesting devices and light guiding at the nanoscale level.

17.
Nat Commun ; 8: 13910, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051061

RESUMO

Sub-wavelength particles made from high-index dielectrics, either individual or as ensembles, are ideal candidates for multifunctional elements in optical devices. Their directionality effects are traditionally analysed through forward and backward measurements, even if these directions are not convenient for in-plane scattering practical purposes. Here we present unambiguous experimental evidence in the microwave range that for a dimer of HRI spherical particles, a perfect switching effect is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization. Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell's equations allows the generalization of our results to other frequency ranges and dimension scales, for instance, the visible and the nanometric scale.

18.
Nanoscale Horiz ; 1(1): 75-80, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32260606

RESUMO

Polydisperse rhodium nanoparticles have recently shown promise for ultraviolet (UV) plasmonics, but controlling the size and morphology of metal nanoparticles is essential for tuning surface plasmon resonances. Here we report the use of slow-injection polyol methods to synthesize monodisperse Rh nanocubes with unprecedentedly large sizes and slightly concave faces. The associated local surface plasmon resonances (LSPRs) red-shifted with increasing sizes in the UV region from deep UV to around 400 nm, consistent with numerical simulations. UV illumination of p-aminothiophenol attached to the Rh nanocubes generated surface-enhanced Raman spectra and accelerated photo-decomposition, and these enhancements were largest for nanocubes whose LSPR was resonant with the UV laser. The lack of a native oxide coating, the precise control of nanocube size and morphology demonstrated here, and the ability to tune the surface plasmon resonance from the deep UV to near UV spectral region, make rhodium a compelling choice for UV plasmonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA