Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(22): e202200254, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35254708

RESUMO

Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach. Covalent attachment of ZnP and ZnPc at the N-sites of NG in NG-ZnP and NG-ZnPc hybrids was confirmed by using a range of spectroscopic, thermogravimetric and imaging techniques. Ground- and excited-state interactions in NG-ZnP and NG-ZnPc were monitored by using spectral and electrochemical techniques. Efficient quenching of photosensitizer fluorescence in these hybrids was observed, and the relatively easier oxidations of ZnP and ZnPc supported excited-state charge-separation events. Photoinduced charge separation in NG-ZnP and NG-ZnPc hybrids was confirmed by using the ultrafast pump-probe technique. The measured rate constants were of the order of 1010  s,-1 thus indicating ultrafast electron transfer phenomena.

2.
J Am Chem Soc ; 143(29): 11199-11208, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260220

RESUMO

Functional materials composed of spontaneously self-assembled electron donor and acceptor entities capable of generating long-lived charge-separated states upon photoillumination are in great demand as they are key in building the next generation of light energy harvesting devices. However, creating such well-defined architectures is challenging due to the intricate molecular design, multistep synthesis, and issues associated in demonstrating long-lived electron transfer. In this study, we have accomplished these tasks and report the synthesis of a new fullerene-bis-Zn-porphyrin e-bisadduct by tether-directed functionalization of C60 via a multistep synthetic protocol. Supramolecular oligomers were subsequently formed involving the two porphyrin-bearing arms embracing a fullerene cage of the vicinal molecule as confirmed by MALDI-TOF spectrometry and variable temperature NMR. In addition, the initially formed worm-like oligomers are shown to evolve to generate donut-like aggregates by AFM monitoring that was also supported by theoretical calculations. The final supramolecular donuts revealed an inner cavity size estimated as 23 nm, close to that observed in photosynthetic antenna systems. Upon systematic spectral, computational, and electrochemical studies, an energy level diagram was established to visualize the thermodynamic feasibility of electron transfer in these donor-acceptor constructs. Subsequently, transient pump-probe spectral studies covering the wide femtosecond-to-millisecond time scale were performed to confirm the formation of long-lived charge-separated states. The lifetime of the final charge-separated state was about 40 µs, thus highlighting the significance of the current approach of building giant self-organized donor-acceptor assemblies for light energy harvesting applications.

3.
Chemistry ; 25(64): 14644-14650, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31424126

RESUMO

Density functional theory (DFT) studies of the interaction between graphene sheets and nitrile oxides have proved the feasibility of the reaction through 1,3-dipolar cycloaddition. The viability of the approach has been also confirmed experimentally through the cycloaddition of few-layer exfoliated graphene and nitrile oxides containing functional organic groups with different electronic nature. The cycloaddition reaction has been successfully achieved in one-pot from the corresponding oximes under microwave (MW) irradiation. The successful formation of the isoxazoline ring has been confirmed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS).

4.
Phys Chem Chem Phys ; 18(3): 1828-37, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26678457

RESUMO

The covalent coupling between oligo(thienylenevinylenes) (nTVs) and carbon nanohorns (CNHs) has been investigated. The resulting nanohybrids have been characterized by a combination of several techniques, including thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. The photophysical properties of the new hybrids were investigated by steady-state and time-resolved spectroscopic techniques. A transient signal characterized by two kinetic regimes, one short decay within 0.5 µs corresponding to around 80% of the total signal and another much longer-lived decay of 10 µs, has been detected. The transient absorption spectra are characterized by a continuous absorption that increases in intensity towards shorter wavelengths, with a maximum at 430 nm. These transient signals have been assigned to the charge-separated state delocalized on CNHs based on the quenching behavior and by comparison with the photophysical properties of nTV in the absence and presence of quenchers. The photophysical behavior of covalent nTV-CNH conjugates with microsecond transients due to electrons and holes on CNHs contrasts with the absence of any transient for analogous nTV-C60 conjugates, for which charge separation was not observed at timescales longer than nanoseconds. The photochemical behavior of CNHs is believed to derive from the amphoteric (electron donor and acceptor) properties of CNHs and from the larger number of carbon atoms (efficient delocalization) in CNHs compared with C60.

5.
Phys Chem Chem Phys ; 18(42): 29582-29590, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27752671

RESUMO

After the feasibility of the 1,3-dipolar cycloaddition reaction between nitrile imines and exfoliated graphene by density functional theory calculations was proved, very few-layer graphene was effectively functionalized using this procedure. Hydrazones with different electronic properties were used as precursors for the 1,3-dipoles, and microwave irradiation as an energy source enabled the reaction to be performed in a few minutes. The anchoring of organic addends on the graphene surface was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis. Ultraviolet photoelectron spectroscopy (UPS) was used to measure the work function and band gap of these new hybrids. Our results demonstrate that it is possible to modulate these important electronic valence band parameters by tailoring the electron richness of the organic addends and/or the degree of functionalization.

6.
ACS Appl Mater Interfaces ; 15(1): 77-90, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36270018

RESUMO

In the past two decades, important results have been obtained on the application of carbon nanotubes (CNTs) as components of smart interfaces promoting neuronal growth and differentiation. Different forms of CNTs have been employed as scaffolds, including raw CNTs and functionalized CNTs, characterized by a different number of walls, mainly single-walled CNTs (SWCNTs) or multiwalled CNTs (MWCNTs). However, double-walled carbon nanotubes (DWCNTs), which present interesting electronic and transport properties, have barely been studied in the field. Apart from the electrical conductivity, the morphology, shape, porosity, and corresponding mechanical properties of the scaffold material are important parameters when dealing with neuronal cells. Thus, the presence of open porous and interconnected networks is essential for cell growth and differentiation. Here, we present an easy methodology to prepare porous self-standing and electrically conductive DWCNT-based scaffolds and study the growth of neuro/glial networks and their synaptic activity. A cross-linking approach with triethylene glycol (TEG) derivatives is applied to improve the tensile performance of the scaffolds while neuronal growth and differentiation are promoted. By testing different DWCNT-based constructs, we confirm that the manufactured structures guarantee a biocompatible scaffold, while favoring the design of artificial networks with high complexity.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Neurônios , Diferenciação Celular/fisiologia , Porosidade
7.
ACS Appl Mater Interfaces ; 15(38): 45212-45228, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37672775

RESUMO

The incorporation of p-type functionalized carbon nanohorns (CNHs) in perovskite solar cells (PSCs) and their comparison with p-type functionalized single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) are reported in this study for the first time. These p-type functionalized carbon nanomaterial (CNM) derivatives were successfully synthesized by [2 + 1] cycloaddition reaction with nitrenes formed from triphenylamine (TPA) and 9-phenyl carbazole (Cz)-based azides, yielding CNHs-TPA, CNHs-Cz, SWCNTs-Cz, SWCNTs-TPA, DWCNTs-TPA, and DWCNTs-Cz. These six novel CNMs were incorporated into the spiro-OMeTAD-based hole transport layer (HTL) to evaluate their impact on regular mesoporous PSCs. The photovoltaic results indicate that all p-type functionalized CNMs significantly improve the power conversion efficiency (PCE), mainly by enhancing the short-circuit current density (Jsc) and fill factor (FF). TPA-functionalized derivatives increased the PCE by 12-17% compared to the control device without CNMs, while Cz-functionalized derivatives resulted in a PCE increase of 4-8%. Devices prepared with p-type functionalized CNHs exhibited a slightly better PCE compared with those based on SWCNTs and DWCNTs derivatives. The increase in hole mobility of spiro-OMeTAD, additional p-type doping, better energy alignment with the perovskite layer, and enhanced morphology and contact interface play important roles in enhancing the performance of the device. Furthermore, the incorporation of p-type functionalized CNMs into the spiro-OMeTAD layer increased device stability by improving the hydrophobicity of the layer and enhancing the hole transport across the MAPI/spiro-OMeTAD interface. After 28 days under ambient conditions and darkness, TPA-functionalized CNMs maintained the performance of the device by over 90%, while Cz-functionalized CNMs preserved it between 75 and 85%.

8.
Nanoscale ; 14(25): 8986-8994, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35699137

RESUMO

Two-dimensional (2D) nanomaterials have attracted interest from the scientific community due to their unique properties. The production of these materials has been carried out by diverse methodologies, the liquid phase exfoliation being the most promising one due to its simplicity and potential scalability. The use of several stabilizers allows to obtain dispersions of these 2D nanomaterials in solvents with low boiling points. Herein we describe a general exfoliation method for different 2D materials employing a biphasic water/dichloromethane system and two different (poly)aromatic hydrocarbons (PAHs). This method allows us to obtain dispersions of the exfoliated 2D materials with high concentrations in the organic solvent. Due to the low boiling point of dichloromethane, and therefore its easy removal, the obtained dispersions can be employed as additives for different composites. We corroborate that the exfoliation efficiency is improved due to the π-π and van der Waals interactions between the PAHs and the layers of the 2D materials.

9.
ACS Nano ; 13(8): 8879-8889, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31329426

RESUMO

In recent years, the use of free-standing carbon nanotube (CNT) films for neural tissue engineering has attracted tremendous attention. CNT films show large surface area and high electrical conductivity that combined with flexibility and biocompatibility may promote neuron growth and differentiation while stimulating neural activity. In addition, adhesion, survival, and growth of neurons can be modulated through chemical modification of CNTs. Axonal and synaptic signaling can also be positively tuned by these materials. Here we describe the ability of free-standing CNT films to influence neuronal activity. We demonstrate that the degree of cross-linking between the CNTs has a strong impact on the electrical conductivity of the substrate, which, in turn, regulates neural circuit outputs.


Assuntos
Nanotubos de Carbono/química , Neurônios/efeitos dos fármacos , Engenharia Tecidual , Diferenciação Celular/efeitos dos fármacos , Condutividade Elétrica , Humanos , Nanocompostos/química , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos
10.
Nanoscale ; 11(32): 14978-14992, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31372604

RESUMO

In recent years there has been a growing interest in finding materials revealing bidirectional charge-transfer characteristics, that is, materials behaving as an electron donor or an acceptor in the presence of redox and photoactive addends, for optoelectronic applications. In this respect, carbon-based nanostructures, such as graphene and carbon nanotubes, have emerged as promising nanomaterials for the development of hybrid systems for bidirectional charge transfer, whose behaviour can be switched from donor-type to acceptor-type by simply changing the electroactive counterpart to which they are anchored. In this review we provide an overview of the main advances that have been made over the past few years in carbon-based hybrid architectures involving different types of carbon nanostructures and photosensitizers. In particular, carbon nanotube and graphene-based hybrid systems will be highlighted.

11.
ACS Appl Mater Interfaces ; 11(13): 12920-12930, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30844229

RESUMO

The development of carbon-based membrane adsorbent materials for water treatment has become a hot topic in recent years. Among them, carbon nanotubes (CNTs) are promising materials because of its large surface area, high aspect ratio, great chemical reactivity, and low cost. In this work, free-standing CNT adsorbents are fabricated from chemically cross-linked single-walled CNTs. We have demonstrated that by controlling the degree of cross-linking, the nanostructure, porous features, and specific surface area of the resulting materials can be tuned, in turn allowing the control of the adsorption capacities and the improvement of the adsorption performance. The cross-linked CNT adsorbents exhibit a notably selective sorption ability and good recyclability for removal of organics and oils from contaminated water.

12.
Nanoscale ; 10(33): 15782-15787, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30095843

RESUMO

One of the most important objectives nowadays in the field of chemical modification of carbon nanotubes (CNTs) is to control the degree of functionalization, since excessive modification can disrupt the π-conjugated system and adversely affect their useful properties. Covalent functionalization is one of the most common methods for the modification of single-walled carbon nanotubes (SWCNTs). However, only a few examples have appeared in the last few years regarding the control of the functionalization degree and the reversibility of the reaction. We present here an approach for the retro-functionalization of SWCNTs which could be applied to different types of covalent functionalizations, allowing the restoration of the π-conjugated structure. The process is performed through the combination of ionic liquids plus microwave irradiation and it is applicable to the retro-arylation and retro-cycloaddition reactions on SWCNTs. The successful retro-functionalization is monitored by Raman spectroscopy, thermogravimetric analysis and UV-Vis-NIR spectroscopy.

13.
Chem Sci ; 9(43): 8221-8227, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30542570

RESUMO

N-Doped graphene (N-G) was chemically functionalized by N-alkylation with the well-known electron acceptor C60. The degree of functionalization and the key structural features of the N-G/C60 hybrid were systematically investigated by a number of techniques including thermogravimetric analysis, X-ray photoelectron and Raman spectroscopies and transmission electron and atomic force microscopies. Absorption and electrochemical studies revealed interactions between the N-G and C60 while the fluorescence of C60 within the hybrid was found to be fully quenched. Evidence for the occurrence of excited state charge transfer from the singlet excited C60 to N-G in the hybrid was obtained from femtosecond transient absorption studies covering the visible-near-IR regions. Electron-pooling experiments performed in the presence of a sacrificial electron donor and a second electron acceptor, methyl viologen, revealed the accumulation of the one-electron reduced product of methyl viologen upon continuous irradiation of the N-G/C60 nanohybrid, thus revealing the utility of this material in photocatalytic energy harvesting applications.

14.
Nanoscale ; 9(22): 7551-7558, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28534917

RESUMO

Functionalization of single-walled (SWCNTs) and double-walled carbon nanotubes (DWCNTs) with a charge stabilizing zinc porphyrin functionalized with triphenylamine entities has been accomplished. The synthetic approach involved the reaction of tris-(triphenylamine)porphyrinato zinc(ii) with iodobenzene functionalized nanotubes through a Sonogashira C-C cross coupling reaction under microwave irradiation conditions. Evidence of covalent functionalization and the extent of functionalization was obtained from systematic studies carried out by AFM, TGA, XPS and Raman spectroscopy techniques. The porphyrin-nanotube interactions in the SWCNT-porphyrin hybrid were probed by studies involving optical absorbance, Raman spectroscopy, steady-state and time resolved emission and electrochemical studies. The fluorescence of porphyrin in this hybrid was found to be quenched due to interactions with the CNTs. Femtosecond transient absorption spectral studies covering both the visible and near-infrared regions were supportive of excited state charge transfer interactions in the zinc porphyrin-SWCNT. The charge separated state was persistent for about 1 ns. Electron pooling experiments suggested that this donor-acceptor nanohybrid could be a useful photocatalyst.

15.
Nanoscale ; 8(31): 14716-24, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27305145

RESUMO

Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.

16.
Biosens Bioelectron ; 74: 24-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26093125

RESUMO

An electrochemical immunosensor for adiponectin (APN) using screen printed carbon electrodes (SPCEs) modified with functionalized double-walled carbon nanotubes (DWCNTs) as platforms for immobilization of the specific antibodies is reported. DWCNTs were functionalized by treatment with 4-aminobenzoic acid (HOOC-Phe) in the presence of isoamylnitrite resulting in the formation of 4-carboxyphenyl-DWCNTs. The oriented binding of specific antibodies toward adiponectin was accomplished by using the metallic-complex chelating polymer Mix&Go™. The HOOC-Phe-DWCNTs-modified SPCEs were characterized by cyclic voltammetry and compared with HOOC-Phe-SWCNTs/SPCE. The different variables affecting the performance of the developed immunosensor were optimized. Under the selected conditions, a calibration plot for APN was constructed showing a range of linearity extending between 0.05 and 10.0 µg/mL which is adequate for the determination of the cytokine in real samples. A detection limit of 14.5 ng/mL was achieved. The so prepared immunosensor exhibited a good reproducibility for the APN measurements, excellent storage stability and selectivity, and a much shorter assay time than the available ELISA kits. The usefulness of the immunosensor for the analysis of real samples was demonstrated by analyzing human serum from female or male healthy patients.


Assuntos
Adiponectina/sangue , Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Quelantes/química , Técnicas Eletroquímicas/instrumentação , Nanotubos de Carbono/química , Ácido 4-Aminobenzoico/química , Adiponectina/análise , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Feminino , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Masculino , Nanotubos de Carbono/ultraestrutura , Polímeros/química , Reprodutibilidade dos Testes
17.
Chem Commun (Camb) ; 50(97): 15313-5, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25347320

RESUMO

A C(4)-bound palladium-N-heterocyclic carbene (4) was selectively obtained from the C(2)-unsubstituted imidazolium salt 3. The higher stability of the C(4) versus the C(2)-bound carbene complex due to pyridine chelation assistance allowed this mesoionic compound to be obtained.

18.
Nanoscale ; 4(15): 4370-81, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22706450

RESUMO

Since fullerenes and carbon nanotubes (CNTs) were discovered, these materials have attracted a great deal of attention in the scientific community due to their unique structures and properties. The properties of both carbon allotropes can be modulated by chemical functionalization, and merging fullerenes and CNTs combines the electronic and optical properties of CNTs with the excellent electron acceptor characteristic of fullerenes; moreover, a synergistic effect of these hybrids can be found, as the properties of both the nanotube and the fullerene are affected by the presence of the other. In these hybrids, the fullerene can be located inside (endohedral) or outside (exohedral) the CNT and both types of hybrid have specific features. CNT-fullerene hybrids have been studied for various applications, including photovoltaics, optical limiting and flame retardancy amongst others. This review outlines the progress in research on CNT-fullerene hybrids, including endohedral and exohedral combinations, their properties, functionalization, applications and outlook.


Assuntos
Fulerenos/química , Nanotubos de Carbono/química , Eletrônica , Luz , Porfirinas/química , Pirrolidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA