Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 13713, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792533

RESUMO

Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.


Assuntos
Muramidase/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Saccharum/genética , Transformação Genética , Animais , Bovinos , Muramidase/genética , Muramidase/isolamento & purificação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharum/crescimento & desenvolvimento
2.
Biotechnol Bioeng ; 104(3): 562-71, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19575415

RESUMO

Several pharmaceutical protein products made in transgenic plant hosts are advancing through clinical trials. Plant hosts present a different set of impurities from which the proteins must be purified compared to other expression hosts such as mammalian cells. In this work, phenolic compounds present in extracts of monoclonal antibody (mAb)-expressing Lemna minor were examined. Two different extraction pHs were evaluated to assess the effect of extraction condition on the concentration of mAb and phenolics in the extracts. The extract prepared at pH 4.5 had an enriched level of mAb relative to native protein when compared to a pH 7.5 extract although similar overall mAb was extracted at either pH. Slightly more mAb was recovered from the pH 3 elution of the pH 4.5 extract run on a MabSelect column than was recovered from the pH 7.5 extract. Phenolic levels in extracts were assessed by spectrophotometry, Folin-Ciocalteu assay and by profiling on RP-HPLC. The Folin-Ciocalteu assay results did not agree with those obtained by the other two methods. Therefore phenolic levels were quantified by RP-HPLC comparing the total area of phenolic peaks to those of reference phenolic compounds. The pH 7.5 extract had 22% less phenolics than the pH 4.5 extract. Acidic precipitation of the pH 7.5 extract resulted in further reduction of phenolics originally present in the pH 7.5 extract. The total phenolics present in the extracts were effectively removed by incubation of extracts with a commercially available anion exchange resin, Amberlite IRA-402. We anticipate that early removal of phenolic compounds will prolong the life of more expensive affinity columns used for the purification of potential pharmaceutical proteins and should therefore be considered in process development involving proteins extracted from transgenic plant hosts.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Araceae/metabolismo , Fenóis/análise , Extratos Vegetais/química , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Araceae/genética , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria
3.
Biotechnol Prog ; 27(2): 410-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21485031

RESUMO

Transgenic Lemna minor has been used successfully to produce several biotherapeutic proteins. For plant-produced mAbs specifically, the cost of protein A capture step is critical as the economic benefits of plant production systems could be erased if the downstream processing ends up being expensive. To avoid potential modification of mAb or fouling of expensive protein A resins, a rapid and efficient removal of phenolics from plant extracts is desirable. We identified major phenolics in Lemna extracts and evaluated their removal by adsorption to PVPP, XAD-4, IRA-402, and Q-Sepharose. Forms of apigenin, ferulic acid, and vitexin comprised ∼ 75% of the total phenolics. Screening of the resins with pure ferulic acid and vitexin indicated that PVPP would not be efficient for phenolics removal. Analysis of the breakthrough fractions of phenolics adsorption to XAD-4, IRA-402, and Q-Sepharose showed differences in adsorption with pH and in the type of phenolics adsorbed. Superior dynamic binding capacities (DBC) were observed at pH 4.5 than at 7.5. To evaluate the cost impact of a phenolics removal step before protein A chromatography, a mAb purification process was simulated using SuperPro Designer 7.0. The economic analysis indicated that addition of a phenolics adsorption step would increase mAb production cost only 20% by using IRA-402 compared to 35% for XAD-4 resin. The cost of the adsorption step is offset by increasing the lifespan of protein A resin and a reduction of overall mAb production cost could be achieved by using a phenolics removal step.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/economia , Fenóis/isolamento & purificação , Extratos Vegetais/imunologia , Plantas Geneticamente Modificadas/imunologia , Adsorção , Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade , Custos e Análise de Custo , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Proteína Estafilocócica A/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA