Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
PLoS Biol ; 18(6): e3000723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511224

RESUMO

Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.


Assuntos
Brugia Malayi/genética , Células Quimiorreceptoras/metabolismo , Culicidae/parasitologia , Filariose Linfática/parasitologia , Variação Genética , Animais , Caenorhabditis elegans/fisiologia , Quimiotaxia , Genoma , Proteínas de Helminto/metabolismo , Larva , Estágios do Ciclo de Vida , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo , Temperatura
2.
J Insect Sci ; 20(6)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147340

RESUMO

Mosquitoes (Diptera: Culicidae) in the Culex pipiens complex play a key role in the transmission and therefore epidemiology of a number of human and animal pathogens globally. These mosquitoes, and sympatric species of the genus Culex Linnaeus that are not within the Cx. pipiens complex, are often considered 'impossible' to distinguish by morphology in the adult female stage. In the United States, this is particularly true for Culex pipiens s.l. and Culex restuans Theobald, both of which are competent vectors of West Nile virus, but likely play different roles in the transmission cycle. Therefore, we undertook an in-depth morphological evaluation of matched larval exuviae and adult specimens that revealed five useful morphological characters that are informative to distinguish Cx. pipiens s.l. from Cx. restuans in the adult stage. Herein, we provide a comprehensive review of the literature on these species of interest, and four additional, morphologically similar, Culex species, and a proposed key to adult female specimens.


Assuntos
Culex/anatomia & histologia , Mosquitos Vetores/anatomia & histologia , Animais , Culex/classificação , Culex/crescimento & desenvolvimento , Feminino , Illinois , Larva/anatomia & histologia , Larva/classificação , Larva/crescimento & desenvolvimento , Minnesota , Mosquitos Vetores/classificação , Mosquitos Vetores/crescimento & desenvolvimento , Especificidade da Espécie , Wisconsin
3.
J Gen Virol ; 100(2): 295-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30632960

RESUMO

The genomic organization and in vitro host range of a novel mosquito-associated orbivirus, designated Skunk River virus, is described. The virus was isolated from Aedes trivittatus collected in Iowa in the United States. Three recognized viruses were also recovered: Culex flavivirus (family Flaviviridae), Houston virus (family Mesoniviridae) and Umatilla virus (family Reoviridae). The genome of Skunk River virus contains 10 segments and its organization is characteristic of viruses in the genus Orbivirus (family Reoviridae). The coding region of each segment was fully sequenced, revealing that the greatest nucleotide identity was to the corresponding regions of Big Cypress orbivirus and Sathuvachari virus, two recently described mosquito-associated orbiviruses. The phylogenetic inference is in agreement with these findings. In vitro host range experiments revealed that Aedes, Anopheles and Culex cell lines, and select lepidopteran and rodent cell lines, are permissive to Skunk River virus replication. In conclusion, we provide evidence of a novel mosquito-associated orbivirus in Iowa.


Assuntos
Aedes/virologia , Genoma Viral , Especificidade de Hospedeiro , Orbivirus/classificação , Orbivirus/isolamento & purificação , Animais , Anopheles , Linhagem Celular , Culex , Ordem dos Genes , Iowa , Lepidópteros , Orbivirus/genética , Orbivirus/fisiologia , Filogenia , Roedores , Análise de Sequência de DNA , Homologia de Sequência
4.
Annu Rev Entomol ; 63: 145-167, 2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-29324042

RESUMO

As holometabolous insects that occupy distinct aquatic and terrestrial environments in larval and adult stages and utilize hematophagy for nutrient acquisition, mosquitoes are subjected to a wide variety of symbiotic interactions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic, and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi, fungal-like organisms, and metazoans, all of which trigger and shape innate infection-response capacity. Depending on the infection or interaction, the mosquito may employ, for example, cellular and humoral immune effectors for septic infections in the hemocoel, humoral infection responses in the midgut lumen, and RNA interference and programmed cell death for intracellular pathogens. These responses often function in concert, regardless of the infection type, and provide a robust front to combat infection. Mosquito-borne pathogens and entomopathogens overcome these immune responses, employing avoidance or suppression strategies. Burgeoning methodologies are capitalizing on this concerted deployment of immune responses to control mosquito-borne disease.


Assuntos
Culicidae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Culicidae/microbiologia , Microbiota
5.
Emerg Infect Dis ; 21(12): 2209-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26583260

RESUMO

Leishmaniasis is a zoonotic disease caused by predominantly vectorborne Leishmania spp. In the United States, canine visceral leishmaniasis is common among hounds, and L. infantum vertical transmission among hounds has been confirmed. We found that L. infantum from hounds remains infective in sandflies, underscoring the risk for human exposure by vectorborne transmission.


Assuntos
Doenças do Cão/transmissão , Transmissão Vertical de Doenças Infecciosas/veterinária , Leishmania infantum/patogenicidade , Zoonoses/transmissão , Animais , Doenças do Cão/epidemiologia , Cães , Humanos , Leishmaniose/epidemiologia , Leishmaniose/veterinária , Psychodidae/patogenicidade , Estados Unidos/epidemiologia , Carga Viral , Zoonoses/patologia
6.
J Gen Virol ; 96(Pt 7): 1821-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25838065

RESUMO

Infectious myonecrosis virus (IMNV) causes significant economic losses in farmed shrimp, where associated mortality in ponds can reach 70 %. To explore host/pathogen interactions, a next-generation sequencing approach using lymphoid organ tissue from IMNV-infected Litopenaeus vannamei shrimp was conducted. Preliminary sequence assembly of just the virus showed that there were at least an additional 639 bp at the 5' terminus and 23 nt at the 3' terminus as compared with the original description of the IMNV genome (7561 nt). Northern blot and reverse transcription-PCR analysis confirmed the presence of novel sequence at both ends of the genome. Using 5' RACE, an additional 4 nt were discovered; 3' RACE confirmed the presence of 22 bp rather than 23 bp of sequence. Based on these data, the IMNV genome is 8226 bp in length. dsRNA was used to trigger RNA interference (RNAi) and suppress expression of the newly revealed genome sections at the 5' end of the IMNV genome in IMNV-infected L. vannamei. An RNAi trigger targeting a 376 bp length of the 5' UTR did not improve survival of infected shrimp. In contrast, an RNAi trigger targeting a 381 bp sequence in ORF1 improved survival to 82.2 % as compared with 2.2 % survival in positive control animals. These studies revealed the importance of the new genome sections to produce high-titre infection, and associated disease and mortality, in infected shrimp.


Assuntos
Genoma Viral , Penaeidae/virologia , Totiviridae/genética , Animais , Northern Blotting , Dados de Sequência Molecular , Infecções por Vírus de RNA , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Análise de Sobrevida , Totiviridae/isolamento & purificação
7.
J Med Entomol ; 52(5): 993-1002, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336230

RESUMO

Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.


Assuntos
Aedes , Anopheles , Inseticidas , Óleos Voláteis , Óleos de Plantas , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Dose Letal Mediana
8.
Cell Tissue Res ; 356(1): 39-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24458703

RESUMO

The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides is characterized by a common C-terminal pentapeptide, FXPRLamide, which is required for diverse physiological functions in various insects. Polyclonal antisera against the C-terminus was utilized to determine the location of cell bodies and axons in the central nervous systems of larval and adult mosquitoes. Immunoreactive material was detected in three groups of neurons in the subesophageal ganglion of larvae and adults. The corpora cardiaca of both larvae and adults contained immunoreactivity indicating potential release into circulation. The adult and larval brains had at least one pair of immunoreactive neurons in the protocerebrum with the adult brain having additional immunoreactive neurons in the dorsal medial part of the protocerebrum. The ventral ganglia of both larvae and adults each contained one pair of neurons that sent their axons to a perisympathetic organ associated with each abdominal ganglion. These results indicate that the mosquito nervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph. The peptides in insects and mosquitoes are produced by two genes, capa and pk/pban. Utilizing PCR protocols, we demonstrate that products of the capa gene could be produced in the abdominal ventral ganglia and the products of the pk/pban gene could be produced in the subesophageal ganglion. Two receptors for pyrokinin peptides were differentially localized to various tissues.


Assuntos
Aedes/metabolismo , Sistema Nervoso Central/metabolismo , Neuropeptídeos/metabolismo , Aedes/genética , Animais , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/citologia , Feminino , Genes de Insetos , Larva/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase
9.
J Am Mosq Control Assoc ; 30(2): 119-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25102595

RESUMO

The last published report of the mosquito species composition present in the state of Iowa was published in 1969 and included 43 species in 8 genera. Since that time, reassessment of specimens in the Iowa State Insect Collection and annual mosquito surveillance efforts have yielded 12 new species records, bringing the total to 55 species in 8 genera. In addition to providing an updated taxonomic checklist for the state of Iowa, abundance information is provided for each species using specimen counts from New Jersey light trapping events that span 45 years.


Assuntos
Culicidae/classificação , Culicidae/fisiologia , Animais , Biota , Iowa , Densidade Demográfica
10.
J Med Entomol ; 61(4): 1043-1053, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38527268

RESUMO

Since the introduction of West Nile virus (WNV) to the United States over 20 years ago, thousands of cases of human disease and death have been reported. Yearly seasonal outbreaks continue to persist, and the city and suburbs of Chicago, Illinois, is considered a "hot spot" for WNV activity. To interrupt WNV transmission, ground ultra-low volume (ULV) adulticide applications are regularly used to reduce Culex pipiens L. and Culex restuans Theobold (Diptera: Culicidae) abundance and infection. The real-world effectiveness of adulticide applications has not been comprehensively assessed, and prior studies, including our own investigation, have yielded inconclusive or conflicting results. Therefore, we expanded our prior work and evaluated the effects of 5 sequential weekly truck-mounted ULV adulticide applications in large residential areas in the northern suburbs of Chicago, Illinois, in 2019 and 2020. Each day, Cx. pipiens and Cx. restuans host-seeking and gravid mosquitoes were collected to assess abundance, age structure, and WNV infection rates. Adulticide applications resulted in significant reductions of both host-seeking and gravid abundance on the night of treatment. The reduction in host-seeking mosquitoes was followed by a reduction in gravid mosquitoes trapped 3 and 4 days after adulticide application and an increase in the proportion of nulliparous mosquitoes. WNV infection rates were significantly reduced in treatment sites as compared to untreated sites when infection rates were higher in 2020. This large-scale study provides comprehensive evidence that ground ULV adulticide applications are an effective tool in an integrated mosquito management program for combating WNV vectors and infection risk.


Assuntos
Culex , Inseticidas , Controle de Mosquitos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Culex/efeitos dos fármacos , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/prevenção & controle , Chicago , Inseticidas/farmacologia , Feminino , Mosquitos Vetores/efeitos dos fármacos , Illinois , Masculino
11.
Acta Trop ; 254: 107205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579960

RESUMO

Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.


Assuntos
Aedes , Culex , Vírus da Doença Nodular Cutânea , Animais , Culex/virologia , Aedes/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Ovinos , Doença Nodular Cutânea/transmissão , Doença Nodular Cutânea/virologia , Mosquitos Vetores/virologia , Feminino
12.
Sci Rep ; 14(1): 18001, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097646

RESUMO

Insect growth regulators, like S-methoprene, are heavily relied upon worldwide for larval mosquito chemical control due to their target specificity and long-lasting effects. In this study, susceptibility to S-methoprene was evaluated in Culex pipiens, a globally important vector species. Populations from 14 sites throughout the Chicago area with a long history of S-methoprene use and two sites with minimal use in Wisconsin were examined. Using a bioassay methodology and probit analyses, LC50 and LC90 values were calculated and compared to a susceptible laboratory strain to develop resistance ratios, then categorized for resistance intensity. The resistance ratios observed required the addition of another category, termed 'extreme' resistance, indicating resistance ratios greater than 100. 'Low' to 'extreme' levels of resistance to S-methoprene were detected throughout Illinois populations, with resistance ratios ranging from 2.33 to 1010.52. Resistance was not detected in populations where S-methoprene pressure has been very limited. These 'extreme' resistance ratios observed have never been documented in a wild vector species mosquito population. The relationships between historical S-methoprene use, resistance detected with laboratory bioassays, and the potential for field product failure remain unclear. However, the profound resistance detected here demonstrates a potential critical threat to protecting public health from mosquito-borne diseases.


Assuntos
Culex , Metoprene , Animais , Culex/efeitos dos fármacos , Chicago , Metoprene/farmacologia , Resistência a Inseticidas , Mosquitos Vetores/efeitos dos fármacos , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos
13.
Front Vet Sci ; 11: 1430892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015109

RESUMO

Ticks are obligate blood-feeding ectoparasites notorious for their role as vectors for various pathogens, posing health risks to pets, livestock, wildlife, and humans. Wildlife also notably serves as reservoir hosts for tick-borne pathogens and plays a pivotal role in the maintenance and dissemination of these pathogenic agents within ecosystems. This study investigated the diversity of ticks and pathogens in wildlife and their habitat by examining ticks collected at Khao Kheow Open Zoo, Chonburi Province, Thailand. Tick samples were collected for 1 year from March 2021 to March 2022 by vegetation dragging and direct sampling from wildlife. A total of 10,436 ticks or 449 tick pools (1-50 ticks per pool) underwent screening for pathogen presence through conventional PCR and DNA sequencing. Out of the 298 samples (66.37%) where bacteria and protozoa were detected, encompassing 8,144 ticks at all stages, 114 positive samples from the PCR screenings were specifically chosen for detailed nucleotide sequencing and comprehensive analysis. Four species of ticks were conclusively identified through the application of PCR, namely, Rhipicephalus microplus, Dermacentor auratus, Haemaphysalis lagrangei, and Haemaphysalis wellingtoni. The highest infection rate recorded was for Anaplasma spp. at 55.23% (248/449), followed by Babesia spp. and Theileria spp. at 29.62% (133/449) and 16.26% (73/449), respectively. Among bacteria identified, three Anaplasma genotypes were closely related to an unidentified Anaplasma spp., A. phagocytophilum, and A. bovis. Among protozoa, only an unidentified Babesia spp. was found, whereas two Theileria genotypes found were closely related to unidentified Theileria spp. and T. equi. Significantly, our findings revealed coinfection with Anaplasma spp., Theileria spp., and Babesia spp. While blood samples from wildlife were not specifically collected to assess infection in this study, the data on the presence of various pathogens in ticks observed can serve as valuable indicators to assess the health status of wildlife populations and to monitor disease dynamics. The findings could be valuable in developing programs for the treatment, prevention, and control of tick-borne illnesses in this area. However, additional research is required to determine the ticks' ability to transmit these pathogens and enhance the current understanding of the relationship among pathogens, ticks, and hosts.

14.
Dis Aquat Organ ; 105(1): 57-64, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23836770

RESUMO

Infectious myonecrosis virus (IMNV) is a significant and emerging pathogen that has a tremendous impact on the culture of the Pacific white shrimp Litopenaeus vannamei. IMNV first emerged in Brazil in 2002 and subsequently spread to Indonesia, causing large economic losses in both countries. No existing therapeutic treatments or effective interventions currently exist for IMNV. RNA interference (RNAi) is an effective technique for preventing viral disease in shrimp. Here, we describe the efficacy of a double-stranded RNA (dsRNA) applied as an antiviral therapeutic following virus challenge. The antiviral molecule is an optimized dsRNA construct that targets an IMNV sequence at the 5' end of the genome and that showed outstanding antiviral protection previously when administered prior to infection. At least 50% survival is observed with a low dose of dsRNA administered 48 h post-infection with a lethal dose of IMNV; this degree of protection was not observed when dsRNA was administered 72 h post-infection. Additionally, administration of the dsRNA antiviral resulted in a significant reduction of the viral load in the muscle of shrimp that died from disease or survived until termination of the present study, as assessed by quantitative RT-PCR. These data indicate that this optimized RNAi antiviral molecule holds promise for use as an antiviral therapeutic against IMNV.


Assuntos
Penaeidae/virologia , RNA de Cadeia Dupla/uso terapêutico , Animais , Antivirais , Regulação da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno , Organismos Livres de Patógenos Específicos , Replicação Viral
15.
J Med Entomol ; 60(5): 1108-1116, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37473814

RESUMO

West Nile virus (WNV) invaded the continental United States over 20 years ago and continues to cause yearly seasonal outbreaks of human and veterinary disease. In the suburbs of Chicago, Illinois, ultra-low volume (ULV) truck-mounted adulticide spraying frequently is performed to reduce populations of Culex restuans Theobald and Cx. pipiens L. mosquitoes (Diptera: Culicidae) in an effort to lower the risk of WNV transmission. The effectiveness of this control method has not been rigorously evaluated, and evidence for Culex population reduction after ULV adulticide spraying has been inconclusive. Therefore, we evaluated the results of 5 sequential weekly truck-mounted adulticide applications of Zenivex® E20 (etofenprox) in 2 paired sites located in Cook County, IL, during the summer of 2018. Mosquito population abundance, age structure, and WNV infection prevalence were monitored and compared between paired treatment and nearby control sites. Adulticide treatment did not result in consistent short-term or long-term reductions in target WNV vector Culex abundance. However, there was a significant increase in the proportion of nulliparous females in the treated sites compared to control sites and a decrease in Cx. pipiens WNV infection rates at one of the treated sites. This evidence that ULV adulticide spraying altered the age structure and WNV infection prevalence in a vector population has important implications for WNV transmission risk management. Our findings also underscore the importance of measuring these important indicators in addition to abundance metrics when evaluating the efficacy of control methods.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Feminino , Animais , Humanos , Mosquitos Vetores
16.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367372

RESUMO

In mosquitoes, the utilization of RNAi for functional genetics is widespread, usually mediated through introduced double-stranded RNAs (dsRNAs) with sequence identity to a gene of interest. However, RNAi in mosquitoes is often hampered by inconsistencies in target gene knockdown between experimental setups. While the core RNAi pathway is known to function in most mosquito strains, the uptake and biodistribution of dsRNAs across different mosquito species and life stages have yet to be extensively explored as a source of variation in RNAi experiments. To better understand mosquito-RNAi dynamics, the biodistribution of a dsRNA to a heterologous gene, LacZ (iLacZ), was tracked following various routes of exposure in the larval and adult stages of Aedes aegypti, Anopheles gambiae, and Culex pipiens. iLacZ was largely limited to the gut lumen when exposed per os, or to the cuticle when topically applied, but spread through the hemocoel when injected. Uptake of dsRNA was noted in a subset of cells including: hemocytes, pericardial cells of the dorsal vessel, ovarian follicles, and ganglia of the ventral nerve cord. These cell types are all known to undergo phagocytosis, pinocytosis, or both, and as such may actively take up RNAi triggers. In Ae. aegypti, iLacZ was detected for up to one week post exposure by Northern blotting, but uptake and degradation drastically differed across tissues. The results presented here reveal that the uptake of RNAi triggers is distinct and specific to the cell type in vivo.

17.
Sci Rep ; 13(1): 9098, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277542

RESUMO

Duck Tembusu virus (DTMUV) is an important flavivirus that can be transmitted to poultry via Aedes albopictus bites. Furthermore, humans residing in the DTMUV epidemic area display activated antiviral immune responses to local DTMUV isolates during the pathogenic invasion, thereby raising the primary concern that this flavivirus may be transmitted to humans via mosquito bites. Therefore, we identified the gene AALF004421, which is a homolog of the 34-kDa salivary protein (34 kDa) of Ae. albopictus and studied the salivary protein-mediated enhancement of DTMUV infection in Ae. albopictus salivary glands. We observed that double-stranded RNA-mediated silencing of the 34 kDa in mosquito salivary glands demonstrated that the silenced 34 kDa impaired DTMUV infectivity, similar to inhibition through serine protease. This impairment occurred as a consequence of triggering the innate immune response function of a macroglobulin complement-related factor (MCR). 34-kDa in the salivary gland which had similar activity as a serine protease, results in the abrogation of antimicrobial peptides production and strong enhance DTMUV replication and transmission. Although the function of the 34 kDa in Ae. albopictus is currently unknown; in the present study, we showed that it may have a major role in DTMUV infection in mosquito salivary glands through the suppression of the antiviral immune response in the earliest stages of infection. This finding provides the first identification of a prominently expressed 34 kDa protein in Ae. albopictus saliva that could serve as a target for controlling DTMUV replication in mosquito vectors.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Humanos , Animais , Flavivirus/genética , Glândulas Salivares , Infecções por Flavivirus/veterinária , Imunidade Inata , Antivirais , Proteínas e Peptídeos Salivares , Serina Proteases , Patos
18.
J Med Entomol ; 60(2): 384-391, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484651

RESUMO

West Nile virus remains the leading cause of arboviral neuroinvasive disease in the United States, despite extensive efforts to control the mosquito vectors involved in transmission. In this study, we evaluated the effectiveness of Altosid SR-20 (active ingredient, S-methoprene 20%) larvicide applications using truck-mounted ultra-low volume (ULV) dispersal equipment to target Culex pipiens Linnaeus (Diptera: Culicidae) and Cx. restuans (Theobald)larvae. A combination of emergence bioassays, open-field measurements of deposited S-methoprene and spray distribution using gas chromatography-mass spectrometry, and assessments of adult Culex spp. populations in response to applications were conducted over the summer of 2020 within the North Shore Mosquito Abatement District (IL, USA). Open-field applications revealed that dispersed Altosid SR-20 using ULV equipment was effective (75% emergence inhibition in susceptible lab strain Cx. pipiens larvae) up to 53 m. In suburban neighborhood applications, we found that S-methoprene deposition and larval emergence inhibition (EI) in front yards did not differ significantly from backyards. An overall EI of 46% and 28% were observed for laboratory strain Cx. pipiens and wild Cx. restuans larvae respectively, and both had an EI significantly higher than the untreated control group. The EI of exposed wild Cx. pipiens larvae did not differ from the untreated controls, suggesting an increased tolerance to S-methoprene. No difference in abundance of gravid or host-seeking adult Culex spp. post-application was detected between treated and untreated sites. These results document the ability of area-wide application to distribute S-methoprene, but this strategy will need further modifications and evaluation for Culex spp. management.


Assuntos
Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Metoprene , Chicago , Mosquitos Vetores , Estações do Ano , Culex/fisiologia , Larva , Febre do Nilo Ocidental/prevenção & controle
19.
Front Vet Sci ; 10: 1247552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781280

RESUMO

Lipoptena insects are important ectoparasites of cervids and may affect humans that are incidentally bitten. The presence of zoonotic pathogen DNA, such as Anaplasma, and Bartonella, raises the importance of Lipoptena insects in veterinary and human medicine. Eld's deer (Rucervus eldii thamin), an endangered wild ruminant in Thailand, are bred and raised in the open zoo. The semi-wild zoo environment suggests ectoparasite infestation and potential risk for mechanical transmission of pathogens to visitors, zoo workers, or other animals. However, epidemiology knowledge of pathogens related to endangered wild ruminants in Thailand is limited. This study aims to determine the prevalence and diversity of Anaplasma and Bartonella in the L. fortisetosa collected from captive Eld's deer in Chon Buri, Thailand. Of the 91 Lipoptena DNA samples obtained, 42 (46.15%) and 25 (27.47%) were positive for Anaplasma and Bartonella by molecular detection, respectively. Further, 42 sequences of Anaplasma (4 nucleotide sequence types) showed 100% identity to those detected in other ruminants and blood-sucking ectoparasites. Twenty-five sequences of Bartonella (8 nucleotide sequence types) showed 97.35-99.11% identity to the novel Bartonella species from sika deer and keds in Japan. Phylogenetic trees revealed Anaplasma sequences were grouped with the clusters of A. bovis and other ruminant-related Anaplasma, while Bartonella sequences were clustered with the novel Bartonella species lineages C, D, and E, which originated from Japan. Interestingly, a new independent lineage of novel Bartonella species was found in obtained specimens. We report the first molecular detection of Anaplasma and Bartonella on L. fortisetosa, which could represent infectious status of captive Eld's deer in the zoo. Wild animals act as reservoirs for many pathogens, thus preventive measures in surrounding areas should be considered to prevent pathogen infection among animals or potential zoonotic infection among humans.

20.
Ticks Tick Borne Dis ; 14(4): 102163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001417

RESUMO

Research initiatives that engage the public (i.e., community science or citizen science) increasingly provide insights into tick exposures in the United States. However, these data have important caveats, particularly with respect to reported travel history and tick identification. Here, we assessed whether a smartphone application, The Tick App, provides reliable and novel insights into tick exposures across three domains - travel history, broad spatial and temporal patterns of species-specific encounters, and tick identification. During 2019-2021, we received 11,424 tick encounter submissions from across the United States, with nearly all generated in the Midwest and Northeast regions. Encounters were predominantly with human hosts (71%); although one-fourth of ticks were found on animals. Half of the encounters (51%) consisted of self-reported peri­domestic exposures, while 37% consisted of self-reported recreational exposures. Using phone-based location services, we detected differences in travel history outside of the users' county of residence along an urbanicity gradient. Approximately 75% of users from large metropolitan and rural counties had travel out-of-county in the four days prior to tick detection, whereas an estimated 50-60% of users from smaller metropolitan areas did. Furthermore, we generated tick encounter maps for Dermacentor variabilis and Ixodes scapularis that partially accounted for travel history and overall mirrored previously published species distributions. Finally, we evaluated whether a streamlined three-question sequence (on tick size, feeding status, and color) would inform a simple algorithm to optimize image-based tick identification. Visual aides of tick coloration and size engaged and guided users towards species and life stage classification moderately well, with 56% of one-time submitters correctly selecting photos of D. variabilis adults and 76% of frequent-submitters correctly selecting photos of D. variabilis adults. Together, these results indicate the importance of bolstering the use of smartphone applications to engage community scientists and complement other active and passive tick surveillance systems.


Assuntos
Ixodes , Aplicativos Móveis , Picadas de Carrapatos , Animais , Adulto , Estados Unidos/epidemiologia , Humanos , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA