Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Br J Neurosurg ; 37(6): 1544-1559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36148501

RESUMO

PURPOSE: Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS: In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS: Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS: In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Mapeamento Encefálico/métodos , Vigília , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia
2.
Magn Reson Med ; 81(6): 3488-3502, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30687949

RESUMO

PURPOSE: To improve the reconstruction quality for quantitative T1 and T2 measurements using the inversion recovery (IR) TrueFISP sequence and to demonstrate the potential for multicomponent analysis. METHODS: The iterative reconstruction method takes advantage of the high redundancy in the smooth exponential signals using principle component analysis (PCA). Multicomponent information is preserved and allows voxel-by-voxel computation of relaxation time spectra with an inverse Laplace transform. Off-resonance effects are analytically and numerically investigated and a correction approach is presented. RESULTS: Single-shot IR TrueFISP in vivo measurements on healthy volunteers demonstrate the improved reconstruction performance compared to a view sharing (k-space weighted image contrast [KWIC]) reconstruction. Especially, tissue components with short apparent relaxation times T1 * are not filtered out and can be identified in the relaxation time spectra. These components include myelin in the human brain (T1 * ≈ 130 ms) and extra cranial subcutaneous fat. CONCLUSION: The PCA-based reconstruction method improves the temporal accuracy and preserves multicomponent information. Spatially resolved relaxation time spectra can be obtained and allow the identification of tissue types with short, apparent relaxation times.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Química Encefálica/fisiologia , Humanos , Bainha de Mielina/química , Imagens de Fantasmas , Análise de Componente Principal
3.
Mol Ther ; 25(12): 2620-2634, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28967558

RESUMO

Oncolytic virotherapy may be a means of improving the dismal prognosis of malignant brain tumors. The rat H-1 parvovirus (H-1PV) suppresses tumors in preclinical glioma models, through both direct oncolysis and stimulation of anticancer immune responses. This was the basis of ParvOryx01, the first phase I/IIa clinical trial of an oncolytic parvovirus in recurrent glioblastoma patients. H-1PV (escalating dose) was administered via intratumoral or intravenous injection. Tumors were resected 9 days after treatment, and virus was re-administered around the resection cavity. Primary endpoints were safety and tolerability, virus distribution, and maximum tolerated dose (MTD). Progression-free and overall survival and levels of viral and immunological markers in the tumor and peripheral blood were also investigated. H-1PV treatment was safe and well tolerated, and no MTD was reached. The virus could cross the blood-brain/tumor barrier and spread widely through the tumor. It showed favorable pharmacokinetics, induced antibody formation in a dose-dependent manner, and triggered specific T cell responses. Markers of virus replication, microglia/macrophage activation, and cytotoxic T cell infiltration were detected in infected tumors, suggesting that H-1PV may trigger an immunogenic stimulus. Median survival was extended in comparison with recent meta-analyses. Altogether, ParvOryx01 results provide an impetus for further H-1PV clinical development.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/terapia , Parvovirus H-1/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Expressão Gênica , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Radioterapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Transgenes , Resultado do Tratamento
4.
J Neurol Neurosurg Psychiatry ; 88(12): 1017-1025, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28710324

RESUMO

State-of-the-art glioma treatment aims to maximise neuro-oncological benefit while minimising losses in quality of life. Optimising this balance remains hindered by our still limited understanding of information processing in the human brain. To help understand individual differences in functional outcomes following neuro-oncological treatment, we review mounting evidence demonstrating the fundamental role that white matter connections play in complex human behaviour. We focus on selected fibre tracts whose destruction is recognised to elicit predictable behavioural deficits and consider specific indications for non-invasive diffusion MRI tractography, the only existing method to map these fibre tracts in vivo, in the selection and planning of neuro-oncological treatments. Despite remaining challenges, longitudinal tract imaging, in combination with intraoperative testing and neuropsychological evaluation, offers unique opportunities to refine our understanding of human brain organisation in the quest to predict and ultimately reduce the quality of life burden of both surgical and non-surgical first-line neuro-oncological therapies.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Neoplasias do Sistema Nervoso/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Humanos , Recuperação de Função Fisiológica
5.
Neuroimage ; 124(Pt A): 806-812, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26419389

RESUMO

An increasing number of studies using real-time fMRI neurofeedback have demonstrated that successful regulation of neural activity is possible in various brain regions. Since these studies focused on the regulated region(s), little is known about the target-independent mechanisms associated with neurofeedback-guided control of brain activation, i.e. the regulating network. While the specificity of the activation during self-regulation is an important factor, no study has effectively determined the network involved in self-regulation in general. In an effort to detect regions that are responsible for the act of brain regulation, we performed a post-hoc analysis of data involving different target regions based on studies from different research groups. We included twelve suitable studies that examined nine different target regions amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis included a standard first- (single subject, extracting main paradigm) and second-level (single subject, all runs) general linear model (GLM) analysis of all participants taking into account the individual timing. Subsequently, at the third level, a random effects model GLM included all subjects of all studies, resulting in an overall mixed effects model. Since four of the twelve studies had a reduced field of view (FoV), we repeated the same analysis in a subsample of eight studies that had a well-overlapping FoV to obtain a more global picture of self-regulation. The GLM analysis revealed that the anterior insula as well as the basal ganglia, notably the striatum, were consistently active during the regulation of brain activation across the studies. The anterior insula has been implicated in interoceptive awareness of the body and cognitive control. Basal ganglia are involved in procedural learning, visuomotor integration and other higher cognitive processes including motivation. The larger FoV analysis yielded additional activations in the anterior cingulate cortex, the dorsolateral and ventrolateral prefrontal cortex, the temporo-parietal area and the visual association areas including the temporo-occipital junction. In conclusion, we demonstrate that several key regions, such as the anterior insula and the basal ganglia, are consistently activated during self-regulation in real-time fMRI neurofeedback independent of the targeted region-of-interest. Our results imply that if the real-time fMRI neurofeedback studies target regions of this regulation network, such as the anterior insula, care should be given whether activation changes are related to successful regulation, or related to the regulation process per se. Furthermore, future research is needed to determine how activation within this regulation network is related to neurofeedback success.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Mapeamento Encefálico , Humanos
6.
Neuroradiology ; 58(9): 911-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27230917

RESUMO

INTRODUCTION: Professional boxing can lead to chronic traumatic encephalopathy, a variant of traumatic brain injury (TBI). Its occurrence in amateur boxers is a matter of debate since amateur boxing is considered to be less harmful due to more strict regulations. However, several studies using different methodological approaches have revealed subtle signs of TBI even in amateurs. Diffusion tensor imaging (DTI) is sensitive to microscopic white matter changes and has been proven useful in TBI when routine MR imaging often is unrevealing. METHODS: DTI, with tract-based spatial statistics (TBSS) together with neuropsychological examination of executive functions and memory, was used to investigate a collective of 31 male amateur boxers and 31 age-matched controls as well as a subgroup of 19 individuals, respectively, who were additionally matched for intellectual performance (IQ). RESULTS: All participants had normal findings in neurological examination and conventional MR. Amateur boxers did not show deficits in neuropsychological tests when their IQ was taken into account. Fractional anisotropy was significantly reduced, while diffusivity measures were increased along central white matter tracts in the boxers group. These changes were in part associated with the number of fights. CONCLUSIONS: TBSS revealed widespread white matter disturbance partially related to the individual fighting history in amateur boxers. These findings closely resemble those in patients with accidental TBI and indicate similar histological changes in amateur boxers.


Assuntos
Boxe/lesões , Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Imagem de Tensor de Difusão/métodos , Leucoencefalopatias/patologia , Substância Branca/patologia , Adulto , Encéfalo/diagnóstico por imagem , Encefalopatia Traumática Crônica/diagnóstico por imagem , Humanos , Leucoencefalopatias/diagnóstico por imagem , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Substância Branca/diagnóstico por imagem
7.
Magn Reson Med ; 73(6): 2129-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24975241

RESUMO

PURPOSE: Recently, the (Resolution Enhanced-) T1 insensitive steady-state imaging (TOSSI) approach has been proposed for the fast acquisition of T2 -weighted images. This has been achieved by balanced steady-state free precession (bSSFP) imaging between unequally spaced inversion pulses. The purpose of this work is to present an extension of this technique, considerably increasing both the efficiency and possibilities of TOSSI. THEORY AND METHODS: A radial trajectory in combination with an appropriate view-sharing reconstruction is used. Because each projection traverses the contrast defining k-space center, several different contrasts can be extracted from a single-shot measurement. These contrasts include various T2 -weightings and T2 /T1 -weighting if an even number of inversion pulses is used, while an odd number allow the generation of several images with predefined tissue types cancelled. RESULTS: The approach is validated for brain and abdominal imaging at 3.0 Tesla. Results are compared with RE-TOSSI, bSSFP, and turbo spin-echo images and are shown to provide similar contrasts in a fraction of scan time. Furthermore, the potential utility of the approach is illustrated by images obtained from a brain tumor patient. CONCLUSION: Radial T1 sensitive and insensitive steady-state imaging is able to generate multiple contrasts out of one single-shot measurement in a short scan time.


Assuntos
Abdome/patologia , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Artefatos , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade , Razão Sinal-Ruído
8.
J Neuroradiol ; 42(3): 156-61, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25857688

RESUMO

BACKGROUND AND PURPOSE: Cavum-trigeminale-cephaloceles (CTCs) are rare lesions of Meckel's cave and the petrous apex. Despite distinctive imaging features, they are frequently mistaken for other petrous apex lesions. In contrast to many of these entities, CTCs do--when asymptomatic--not require any invasive work-up or even surgical excision. Since correct diagnosis has profound impact on clinical decision-making, we report on a series of CTCs with distinct imaging features and their important differential diagnoses. MATERIAL AND METHODS: We report a retrospective series of 5 patients with CTCs and the associated imaging features including the absence of diffusion restriction and solid contrast enhancement as well as their size, anatomical location with regard to adjacent structures and the remodeling or erosion of surrounding bony structures. RESULTS: Our series contains the largest CTC that has, to the best of our knowledge, been reported so far. It revealed a deep cervical extension and was initially mistaken for a branchial cleft cyst. Furthermore, we show that CTCs can erode or remodel important structures such as canalis nervi hypoglossi, canalis Vidiani, foramen rotundum, ovale, lacerum and spinosum without causing clinical symptoms. CONCLUSION: In contrast to previous reports in which asymptomatic CTC did not include critical structures such as the foramina rotundum, ovale, lacerum or spinosum or the hypoglossal or Vidian canal, we show that CTCs can be asymptomatic even when eroding or remodeling such clinically important structures. When extending below the skull base, CTCs are a rare differential diagnosis to cystic cervical lesions such as type II branchial cleft cysts.


Assuntos
Branquioma/diagnóstico , Encefalocele/diagnóstico , Osso Petroso/patologia , Base do Crânio/patologia , Osso Esfenoide/patologia , Adolescente , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
9.
Cogn Affect Behav Neurosci ; 13(4): 703-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23868644

RESUMO

Functional magnetic reasonance imaging (fMRI) plays an important role in pre-surgical planning for patients with resectable brain lesions such as tumors. With appropriately designed tasks, the results of fMRI studies can guide resection, thereby preserving vital brain tissue. The mass univariate approach to fMRI data analysis consists of performing a statistical test in each voxel, which is used to classify voxels as either active or inactive-that is, related, or not, to the task of interest. In cognitive neuroscience, the focus is on controlling the rate of false positives while accounting for the severe multiple testing problem of searching the brain for activations. However, stringent control of false positives is accompanied by a risk of false negatives, which can be detrimental, particularly in clinical settings where false negatives may lead to surgical resection of vital brain tissue. Consequently, for clinical applications, we argue for a testing procedure with a stronger focus on preventing false negatives. We present a thresholding procedure that incorporates information on false positives and false negatives. We combine two measures of significance for each voxel: a classical p-value, which reflects evidence against the null hypothesis of no activation, and an alternative p-value, which reflects evidence against activation of a prespecified size. This results in a layered statistical map for the brain. One layer marks voxels exhibiting strong evidence against the traditional null hypothesis, while a second layer marks voxels where activation cannot be confidently excluded. The third layer marks voxels where the presence of activation can be rejected.


Assuntos
Mapeamento Encefálico , Encéfalo/irrigação sanguínea , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/fisiologia , Encéfalo/cirurgia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Oxigênio/sangue , Análise de Componente Principal
10.
MAGMA ; 26(4): 411-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23371762

RESUMO

OBJECT: Clinical 3 T MRI systems are rapidly increasing and MRI systems with a static field of 7 T or even more have been installed. The RF power deposition is proportional to the square of the static magnetic field strength and is characterized by the specific absorption rate (SAR). Therefore, there exist defined safety limits to avoid heating of the patient. Here, we describe a hybrid method to significantly reduce the SAR compared to a turbo-spin-echo (TSE) sequence. MATERIALS AND METHODS: We investigate the potential benefits of a combined acquisition technique (CAT) for high-field neuroimaging at 3 and 7 T. The TSE/EPI CAT experiments were performed on volunteers and patients and compared with standard TSE and GRASE protocols. Problems and solutions regarding T2 weighted CAT imaging are discussed. RESULTS: We present in vivo images with T2 and proton density contrast obtained on 3 and 7 T with significant SAR reduction (up to 60%) compared with standard TSE. Image quality is comparable to TSE but CAT shows fewer artifacts than a GRASE sequence. CONCLUSION: CAT is a promising candidate for neuroimaging at high fields up to 7 T. The SAR reduction allows one to shorten the waiting time between two excitations or to image more slices thereby reducing the overall measurement time.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Ondas de Rádio , Absorção , Artefatos , Encéfalo/fisiologia , Catéteres , Humanos , Metais , Prótons , Reprodutibilidade dos Testes , Razão Sinal-Ruído
11.
J Neurosci ; 31(13): 4852-7, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21451023

RESUMO

The feeling of "body ownership" may be experimentally investigated by perceptual illusions. The "rubber hand illusion" (RHI) leads human subjects to experience an artificial hand as their own. According to functional imaging, the ventral premotor cortex (PMv) plays a key role in the integration of multisensory inputs allowing the "incorporation" of the rubber hand into body representation. However, causal structure-function relationships can only be obtained by lesion studies. Here, we tested the RHI in 70 stroke patients and in 40 age-matched healthy controls. Additionally, asomatognosia, the unawareness of one's own body parts, was assessed in a subgroup of 64 stroke patients. Ischemic lesions were delineated on diffusion-weighted magnetic resonance images and normalized. Right-hemispheric lesions were mirrored across the midline. Voxels that might be essential for RHI and/or somatognosia were defined by voxel-based lesion-symptom mapping. Probabilistic diffusion tractography was used to identify tracts passing through these voxels. Contralesional rubber hand illusion failure (RHIF) was observed in 18 (26%) of 70 stroke patients, an additional ipsilesional RHIF in seven of these patients. RHIF-associated lesion voxels were located subcortically adjacent to the insula, basal ganglia, and within the periventricular white matter. Tractography revealed fiber tract connections of these voxels with premotor, parietal, and prefrontal cortex. Contralesional asomatognosia was found in 18 (28%) of 64 stroke patients. In contrast to RHIF, asomatognosia-associated lesion voxels showed no connection with PMv. The results point to a role of PMv and its connections in mediating changes in the sense of limb ownership driven by multisensory stimulation.


Assuntos
Emoções/fisiologia , Mãos , Ilusões/fisiologia , Córtex Motor/fisiologia , Propriocepção/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Extremidades/fisiologia , Feminino , Mãos/fisiologia , Humanos , Ilusões/psicologia , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia , Adulto Jovem
12.
Ann Appl Stat ; 16(4): 2626-2647, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36338823

RESUMO

Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.

13.
Schizophr Res ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36155159

RESUMO

In the first half of the 20th century, well before the antipsychotic era, paratonia, Gegenhalten and psychomotor hypertonia were described as new forms of hypertonia intrinsic to particular psychoses and catatonic disorders. A series of astute clinical observations and experiments supported their independence from rigidity seen in Parkinson's disease. After World War II, motor disorders went out of fashion in psychiatry, with drug-induced parkinsonism becoming the prevailing explanation for all involuntary resistance to passive motion. With the 'forgetting' of paratonia and Gegenhalten, parkinsonism became the prevailing reading grid, such that the rediscovery of hypertonia in antipsychotic-naive patients at the turn of the 21st century is currently referred to as "spontaneous parkinsonism", implicitly suggesting intrinsic and drug-induced forms to be the same. Classical descriptive psychopathology gives a more nuanced view in suggesting two non-parkinsonian hypertonias: (i) locomotor hypertonia corresponds to Ernest Dupré's paratonia and Karl Kleist's reactive Gegenhalten; it is a dys-relaxation phenomenon that often needs to be activated. (ii) Psychomotor hypertonia is experienced as an admixture of assistance and resistance that partially overlaps with Kleist's spontaneous Gegenhalten, but was convincingly isolated by Henri Claude and Henri Baruk thanks to electromyogram recordings; psychomotor hypertonia is underpinned by "anticipatory contractions" of cortical origin, occurrence of which in phase or antiphase with the movement accounted for facilitation or opposition to passive motions. This century-old knowledge is not only of historical interest. Some results have recently been replicated in dementia and as now known to involve specific premotor systems.

14.
Schizophr Res ; 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36357299

RESUMO

Abnormal movements are intrinsic to some forms of endogenous psychoses. Spontaneous dyskinesias are observed in drug-naïve first-episode patients and at-risk subjects. However, recent descriptions of spontaneous dyskinesias may actually represent the rediscovery of a more complex phenomenon, 'parakinesia' which was described and documented in extensive cinematographic recordings and long-term observations by German and French neuropsychiatrists decades before the introduction of antipsychotics. With the emergence of drug induced movement disorders, the description of parakinesia has been refined to emphasize the features enabling differential diagnosis with tardive dyskinesia. Unfortunately, parakinesia was largely neglected by mainstream psychiatry to the point of being almost absent from the English-language literature. With the renewed interest in motor phenomena intrinsic to SSD, it was timely not only to raise awareness of parakinesia, but also to propose a scientifically usable definition for this phenomenon. Therefore, we conducted a Delphi consensus exercise with clinicians familiar with the concept of parakinesia. The original concept was separated into hyperkinetic parakinesia (HPk) as dyskinetic-like expressive movements and parakinetic psychomotricity (PPM), i.e., patient's departing from the patient's normal motion style. HPk prevails on the upper part of the face and body, resembling expressive and reactive gestures that not only occur inappropriately but also appear distorted. Abnormal movements vary in intensity depending on the level of psychomotor arousal and are thus abated by antipsychotics. HPk frequently co-occurs with PPM, in which gestures and mimics lose their naturalness and become awkward, disharmonious, stiff, mannered, and bizarre. Patients are never spontaneously aware of HPk or PPM, and the movements are never experienced as self-dystonic or self-alien. HPk and PPM are highly specific to endogenous psychoses, in which they are acquired and progressive, giving them prognostic value. Their differential diagnoses and correspondences with current international concepts are discussed.

15.
Eur Neuropsychopharmacol ; 56: 60-73, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942409

RESUMO

Current classification systems use the terms "catatonia" and "psychomotor phenomena" as mere a-theoretical descriptors, forgetting about their theoretical embedment. This was the source of misunderstandings among clinicians and researchers of the European collaboration on movement and sensorimotor/psychomotor functioning in schizophrenia and other psychoses or ECSP. Here, we review the different perspectives, their historical roots and highlight discrepancies. In 1844, Wilhelm Griesinger coined the term "psychic-motor" to name the physiological process accounting for volition. While deriving from this idea, the term "psychomotor" actually refers to systems that receive miscellaneous intrapsychic inputs, convert them into coherent behavioral outputs send to the motor systems. More recently, the sensorimotor approach has drawn on neuroscience to redefine the motor signs and symptoms observed in psychoses. In 1874, Karl Kahlbaum conceived catatonia as a brain disease emphasizing its somatic - particularly motor - features. In conceptualizing dementia praecox Emil Kraepelin rephrased catatonic phenomena in purely mental terms, putting aside motor signs which could not be explained in this way. Conversely, the Wernicke-Kleist-Leonhard school pursued Kahlbaum's neuropsychiatric approach and described many new psychomotor signs, e.g. parakinesias, Gegenhalten. They distinguished 8 psychomotor phenotypes of which only 7 are catatonias. These barely overlap with consensus classifications, raising the risk of misunderstanding. Although coming from different traditions, the authors agreed that their differences could be a source of mutual enrichment, but that an important effort of conceptual clarification remained to be made. This narrative review is a first step in this direction.


Assuntos
Catatonia , Neurociências , Transtornos Psicóticos , Catatonia/diagnóstico , Catatonia/terapia , Consenso , Humanos , Desempenho Psicomotor , Transtornos Psicóticos/diagnóstico
16.
Radiology ; 260(1): 199-206, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21493788

RESUMO

PURPOSE: To assess nerve T2 signal and caliber as diagnostic signs at magnetic resonance (MR) neurography in ulnar neuropathy at the elbow (UNE). MATERIALS AND METHODS: This prospective study was approved by the institutional review board, and written informed consent was obtained from all participants. Twenty patients with UNE were graded by using clinical criteria and nerve conduction studies as mild (n = 12) and severe (n = 8) and were compared with 20 healthy control subjects. All subjects underwent ulnar nerve MR neurography (in-plane resolution of 0.4 × 0.4 mm) covering the elbow region, including T2-weighted imaging with fat suppression (turbo inversion-recovery magnitude sequence: repetition time msec/echo time msec/inversion time msec, 6, 120/66/180) and T1-weighted turbo spin-echo imaging (843/16). Nerve T2 signal increase, measured by using T2-weighted contrast-to-noise ratios across the cubital tunnel, and nerve caliber, determined by using T1-weighted pixelwise measurement of cross-sectional nerve area, were evaluated as diagnostic signs. Qualitative assessment by using visual grading was performed additionally. RESULTS: Diagnostic performance, as determined with area under the receiver operating characteristic curve (AUC), was excellent for nerve T2 signal to discriminate UNE from a normal finding (AUC = 0.94; 95% confidence interval [CI]: 0.87, 1.00) and was excellent for nerve caliber to discriminate severe from mild UNE (AUC = 0.95; 95% CI: 0.85, 1.00). Qualitative assessment demonstrated sensitivity of 83% and specificity of 85% for MR neurography of UNE. CONCLUSION: Nerve T2 signal increase seems to be an accurate sign to determine the presence of UNE. Nerve caliber enlargement discriminates severe from mild UNE. UNE may be diagnosed with high accuracy by means of quantitative or qualitative evaluation of these signs.


Assuntos
Cotovelo/inervação , Cotovelo/patologia , Imageamento por Ressonância Magnética/métodos , Nervo Ulnar/patologia , Neuropatias Ulnares/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
17.
J Neurol Neurosurg Psychiatry ; 82(5): 578-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20980484

RESUMO

BACKGROUND: In patients with multiple sclerosis (MS), motor tasks are associated with increased activation of ipsilateral motor cortical areas. The authors examined the role of two ipsilateral motor areas during performance of a simple motor task in MS patients in relation to their motor impairment and CNS injury. METHODS: Single pulses of transcranial magnetic stimulation (TMS) were used to interfere transiently with neuronal processing in the contralateral (M1(CONTRA)) or ipsilateral (M1(IPSI)) primary motor cortex or ipsilateral dorsal premotor cortex (PMd(IPSI)) during a simple reaction time (RT) task in 26 right-handed patients with moderately severe stable MS and matched healthy controls. Subjects responded to an auditorily presented Go signal as quickly as possible by performing isometric right-thumb abductions. TMS was applied 100 ms after the Go signal. Motor impairment was evaluated by hand function tests. CNS injury was assessed by magnetic resonance spectroscopy (normalised N-acetyl-aspartate spectra, NAA/Cr), by the total cerebral T2-weighted MRI hyperintense lesion load, and by corticomuscular latency (CML) to the abductor pollicis brevis muscle. RESULTS: TMS applied to M1(CONTRA) slowed RT in patients and controls. In contrast, stimulation of M1(IPSI) or PMd(IPSI) increased RT only in MS patients. In patients, the relative RT changes following TMS over M1(IPSI) or PMd(IPSI) did not correlate with any of the motor function tests or with NAA/Cr or total cerebral lesion load. However, RT changes following TMS over M1(IPSI) correlated inversely with CML. CONCLUSIONS: Recruitment of ipsilateral motor areas may be a functionally relevant, yet limited adaptive response to chronic brain injury in MS patients.


Assuntos
Córtex Motor/fisiopatologia , Esclerose Múltipla/fisiopatologia , Adulto , Estudos de Casos e Controles , Eletromiografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Destreza Motora/fisiologia , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
18.
Clin Neuroradiol ; 31(1): 245-256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32274518

RESUMO

PURPOSE: Functional magnetic resonance imaging (fMRI) has an established role in neurosurgical planning; however, ambiguity surrounds the comparative value of resting and task-based fMRI relative to anatomical localization of the sensorimotor cortex. This study was carried out to determine: 1) how often fMRI adds to prediction of motor risks beyond expert neuroradiological review, 2) success rates of presurgical resting and task-based sensorimotor mapping, and 3) the impact of accelerated resting fMRI acquisitions on network detectability. METHODS: Data were collected at 2 centers from 71 patients with a primary brain tumor (31 women; mean age 41.9 ± 13.9 years) and 14 healthy individuals (6 women; mean age 37.9 ± 12.7 years). Preoperative 3T MRI included anatomical scans and resting fMRI using unaccelerated (TR = 3.5 s), intermediate (TR = 1.56 s) or high temporal resolution (TR = 0.72 s) sequences. Task fMRI finger tapping data were acquired in 45 patients. Group differences in fMRI reproducibility, spatial overlap and success frequencies were assessed with t­tests and χ2-tests. RESULTS: Radiological review identified the central sulcus in 98.6% (70/71) patients. Task-fMRI succeeded in 100% (45/45). Resting fMRI failed to identify a sensorimotor network in up to 10 patients; it succeeded in 97.9% (47/48) of accelerated fMRIs, compared to only 60.9% (14/23) of unaccelerated fMRIs ([Formula: see text](2) = 17.84, p < 0.001). Of the patients 12 experienced postoperative deterioration, largely predicted by anatomical proximity to the central sulcus. CONCLUSION: The use of fMRI in patients with residual or intact presurgical motor function added value to uncertain anatomical localization in just a single peri-Rolandic glioma case. Resting fMRI showed high correspondence to task localization when acquired with accelerated sequences but offered limited success at standard acquisitions.


Assuntos
Neoplasias Encefálicas , Glioma , Córtex Sensório-Motor , Adulto , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Córtex Sensório-Motor/diagnóstico por imagem
19.
Hum Brain Mapp ; 31(2): 193-202, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19603408

RESUMO

We have identified and studied a pronounced artifact in diffusion-weighted MRI on a clinical system. The artifact results from vibrations of the patient table due to low-frequency mechanical resonances of the system which are stimulated by the low-frequency gradient switching associated with the diffusion-weighting. The artifact manifests as localized signal-loss in images acquired with partial Fourier coverage when there is a strong component of the diffusion-gradient vector in the left-right direction. This signal loss is caused by local phase ramps in the image domain which shift the apparent k-space center for a particular voxel outside the covered region. The local signal loss masquerades as signal attenuation due to diffusion, severely disrupting the quantitative measures associated with diffusion-tensor imaging (DTI). We suggest a way to improve the interpretation of affected DTI data by including a co-regressor which accounts for the empirical response of regions affected by the artifact. We also demonstrate that the artifact may be avoided by acquiring full k-space data, and that subsequent increases in TE can be avoided by employing parallel acceleration.


Assuntos
Artefatos , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Vibração , Encéfalo/anatomia & histologia , Encéfalo/patologia , Edema Encefálico/patologia , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/instrumentação , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/patologia
20.
Radiology ; 257(3): 764-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20923870

RESUMO

PURPOSE: To test whether susceptibility-weighted magnetic resonance imaging at baseline may help predict cognitive decline. MATERIALS AND METHODS: This prospective study was approved by the institutional review board, and written informed consent was obtained from all participants. Thirty-five healthy control subjects and 69 patients with mild cognitive impairment were included. Patients with mild cognitive impairment underwent neuropsychologic follow-up after 1 year (40 patients with stable mild cognitive impairment, 27 with progressive mild cognitive impairment, and two lost to follow-up). Cerebral microhemorrhages were visually analyzed by two experienced neuroradiologists in consensus. Iron deposition in deep gray matter was assessed with voxel-wise and region-of-interest analysis after nonlinear spatial registration. In addition, individual classification of mild cognitive impairment was analyzed by using a support vector machine (SVM). RESULTS: At baseline, the number of cerebral microhemorrhages was significantly higher in the mild cognitive impairment group than in the control group (P < .01) but did not differ between the patients with stable and those with progressive mild cognitive impairment. Compared with the control group, patients with mild cognitive impairment had increased iron concentration in the right pallidum (P < .01) and right substantia nigra (P < .01) but decreased concentration in the right red nucleus (P < .05). The classification based on the SVM successfully helped discriminate patients with mild cognitive impairment from the healthy control subjects (accuracy, 84%; sensitivity, 89%; specificity, 85%) and those with stable from those with progressive mild cognitive impairment (accuracy, 85%; sensitivity, 84%; specificity, 83%). CONCLUSION: The findings reveal an accumulation of cerebral microhemorrhage in patients with mild cognitive impairment that is present at baseline, independent of subsequent cognitive decline, as well as an altered iron distribution in subcortical nuclei between the healthy control subjects and patients with mild cognitive impairment. Analysis of iron deposition at baseline performed with an SVM might help identify individual patients with mild cognitive impairment at risk for cognitive decline. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100612/-/DC1.


Assuntos
Hemorragia Cerebral/patologia , Transtornos Cognitivos/patologia , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Idoso , Algoritmos , Análise de Variância , Química Encefálica , Estudos de Casos e Controles , Hemorragia Cerebral/metabolismo , Transtornos Cognitivos/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos Prospectivos , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA