Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Physiol Renal Physiol ; 326(5): F704-F726, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482556

RESUMO

PAX2 regulates kidney development, and its expression persists in parietal epithelial cells (PECs), potentially serving as a podocyte reserve. We hypothesized that mice with a Pax2 pathogenic missense variant (Pax2A220G/+) have impaired PEC-mediated podocyte regeneration. Embryonic wild-type mouse kidneys showed overlapping expression of PAX2/Wilms' tumor-1 (WT-1) until PEC and podocyte differentiation, reflecting a close lineage relationship. Embryonic and adult Pax2A220G/+ mice have reduced nephron number but demonstrated no glomerular disease under baseline conditions. Pax2A220G/+ mice compared with wild-type mice were more susceptible to glomerular disease after adriamycin (ADR)-induced podocyte injury, as demonstrated by worsened glomerular scarring, increased podocyte foot process effacement, and podocyte loss. There was a decrease in PAX2-expressing PECs in wild-type mice after adriamycin injury accompanied by the occurrence of PAX2/WT-1-coexpressing glomerular tuft cells. In contrast, Pax2A220G/+ mice showed no changes in the numbers of PAX2-expressing PECs after adriamycin injury, associated with fewer PAX2/WT-1-coexpressing glomerular tuft cells compared with injured wild-type mice. A subset of PAX2-expressing glomerular tuft cells after adriamycin injury was increased in Pax2A220G/+ mice, suggesting a pathological process given the worse outcomes observed in this group. Finally, Pax2A220G/+ mice have increased numbers of glomerular tuft cells expressing Ki-67 and cleaved caspase-3 compared with wild-type mice after adriamycin injury, consistent with maladaptive responses to podocyte loss. Collectively, our results suggest that decreased glomerular numbers in Pax2A220G/+ mice are likely compounded with the inability of their mutated PECs to regenerate podocyte loss, and together these two mechanisms drive the worsened focal segmental glomerular sclerosis phenotype in these mice.NEW & NOTEWORTHY Congenital anomalies of the kidney and urinary tract comprise some of the leading causes of kidney failure in children, but our previous study showed that one of its genetic causes, PAX2, is also associated with adult-onset focal segmental glomerular sclerosis. Using a clinically relevant model, our present study demonstrated that after podocyte injury, parietal epithelial cells expressing PAX2 are deployed into the glomerular tuft to assist in repair in wild-type mice, but this mechanism is impaired in Pax2A220G/+ mice.


Assuntos
Doxorrubicina , Glomérulos Renais , Mutação de Sentido Incorreto , Fator de Transcrição PAX2 , Podócitos , Animais , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Doxorrubicina/toxicidade , Camundongos , Regeneração , Modelos Animais de Doenças , Proliferação de Células , Camundongos Endogâmicos C57BL , Fenótipo , Apoptose , Masculino , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo , Nefropatias/induzido quimicamente
2.
Nephrol Dial Transplant ; 38(4): 950-960, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35948275

RESUMO

BACKGROUND: Although the clinical benefit of obtaining a remission in proteinuria in nephrotic patients with focal segmental glomerulosclerosis (FSGS) is recognized, the long-term value of maintaining it and the impact of relapses on outcome are not well described. METHODS: We examined the impact of remissions and relapses on either a 50% decline in kidney function or end-stage kidney disease (combined event) using time-dependent and landmark analyses in a retrospective study of all patients from the Toronto Glomerulonephritis Registry with biopsy-proven FSGS, established nephrotic-range proteinuria and at least one remission. RESULTS: In the 203 FSGS individuals with a remission, 89 never relapsed and 114 experienced at least one relapse. The first recurrence was often followed by a repeating pattern of remission and relapse. The 10-year survival from a combined event was 15% higher in those with no relapse versus those with any relapse. This smaller than anticipated difference was related to the favourable outcome in individuals whose relapses quickly remitted. Relapsers who ultimately ended in remission (n = 46) versus in relapse (n = 68) experienced a 91% and 32% 7-year event survival (P < .001), respectively. Using time-varying survival analyses that considered all periods of remission and relapse in every patient and adjusting for each period's initial estimated glomerular filtration rate, the state of relapse was associated with a 2.17 (95% confidence interval 1.32-3.58; P = .002) greater risk of experiencing a combined event even in this FSGS remission cohort. CONCLUSION: In FSGS, unless remissions are maintained and relapses avoided, long-term renal survival remains poor. Treatment strategies addressing remission duration remain poorly defined and should be an essential question in future trials.


Assuntos
Glomerulosclerose Segmentar e Focal , Humanos , Glomerulosclerose Segmentar e Focal/complicações , Estudos Retrospectivos , Resultado do Tratamento , Proteinúria/complicações , Indução de Remissão
3.
Pediatr Nephrol ; 37(2): 253-262, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635378

RESUMO

Specific variants in genes that encode the α3α4α5 chains of type IV collagen cause Alport syndrome (AS), which encompass a clinical spectrum from isolated hematuria to multisystem disease affecting sight, hearing and kidney function. The commonest form is X-linked Alport syndrome (XLAS; COL4A5) with autosomal AS (COL4A3 and COL4A4) comprising a minority of cases. While historic data estimates the frequency of AS at 1:5000-10,000, recent population-based genetic studies suggest the prevalence is considerably higher. Genome-wide association studies (GWAS) have been performed in the Icelandic (deCODE) and UK (UK Biobank) populations, demonstrating an association of type IV collagen gene variants with AS relevant kidney traits. In the Icelandic population, 1 in 600 carries a 2.5-kb COL4A3 coding deletion or a COL4A3 missense variant (rs200287952[A], Gly695Arg), both of which are strongly associated with hematuria and albuminuria (P values = 1.9 × 10-5 to 2.5 × 10-20). In the UK Biobank, COL4A4 rs35138315 (Ser969X; carrier frequency 0.13%) is strongly associated with both hematuria and albuminuria (P = 1.5 × 10-73). Thus, the frequency for autosomal AS is 5-16 times higher than the historic prevalence of all forms of the disorder. Furthermore, COL4A4 rs3518315 (Ser969X) is also a reported founder mutation in families with autosomal dominant focal and segmental glomerulosclerosis and autosomal recessive forms of AS. This supports an additive mode of inheritance for specific variants, wherein a number of copies of a mutation influence disease severity in a cumulative fashion. These studies did not include the X chromosome, excluding analysis of COL4A5, which represents an area for future study.


Assuntos
Albuminúria , Colágeno Tipo IV , Hematúria , Nefrite Hereditária , Albuminúria/genética , Autoantígenos/genética , Colágeno Tipo IV/genética , Estudo de Associação Genômica Ampla , Hematúria/genética , Humanos , Mutação , Nefrite Hereditária/genética , Linhagem
4.
J Am Soc Nephrol ; 32(7): 1682-1695, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33863784

RESUMO

BACKGROUND: Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS: Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS: Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3ß, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS: These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3ß, in the treatment of FSGS.

5.
BMC Nephrol ; 22(1): 320, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565340

RESUMO

BACKGROUND: Focal and segmental glomerulosclerosis (FSGS) is a histologic pattern of injury that characterizes a wide spectrum of diseases. Many genetic causes have been identified in FSGS but even in families with comprehensive testing, a significant proportion remain unexplained. METHODS: In a family with adult-onset autosomal dominant FSGS, linkage analysis was performed in 11 family members followed by whole exome sequencing (WES) in 3 affected relatives to identify candidate genes. RESULTS: Pathogenic variants in known nephropathy genes were excluded. Subsequently, linkage analysis was performed and narrowed the disease gene(s) to within 3% of the genome. WES identified 5 heterozygous rare variants, which were sequenced in 11 relatives where DNA was available. Two of these variants, in LAMA2 and LOXL4, remained as candidates after segregation analysis and encode extracellular matrix proteins of the glomerulus. Renal biopsies showed classic segmental sclerosis/hyalinosis lesion on a background of mild mesangial hypercellularity. Examination of basement membranes with electron microscopy showed regions of dense mesangial matrix in one individual and wider glomerular basement membrane (GBM) thickness in two individuals compared to historic control averages. CONCLUSIONS: Based on our findings, we postulate that the additive effect of digenic inheritance of heterozygous variants in LAMA2 and LOXL4 leads to adult-onset FSGS. Limitations to our study includes the absence of functional characterization to support pathogenicity. Alternatively, identification of additional FSGS cases with suspected deleterious variants in LAMA2 and LOXL4 will provide more evidence for disease causality. Thus, our report will be of benefit to the renal community as sequencing in renal disease becomes more widespread.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Laminina/genética , Proteína-Lisina 6-Oxidase/genética , Idade de Início , Idoso , Membrana Basal/ultraestrutura , Transtornos Cromossômicos/genética , Feminino , Testes Genéticos , Heterozigoto , Humanos , Rim/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Sequenciamento do Exoma
6.
Curr Opin Nephrol Hypertens ; 27(3): 194-200, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465426

RESUMO

PURPOSE OF REVIEW: The widespread adoption of next-generation sequencing by research and clinical laboratories has begun to uncover the previously unknown genetic basis of many diseases. In nephrology, one of the best examples of this is seen in focal and segmental glomerulosclerosis (FSGS) and nephrotic syndrome. We review advances made in 2017 as a result of human and molecular genetic studies as it relates to FSGS and nephrotic syndrome. RECENT FINDINGS: There are more than 50 monogenic genes described in steroid-resistant nephrotic syndrome and FSGS, with seven reported in 2017. In individuals presenting with FSGS or nephrotic syndrome before or at the age of 18 years, the commonest genes in which a mutation is found continues to be limited to only a few including NPHS1 and NPHS2 based on multiple studies. For FSGS or nephrotic syndrome that presents after 18 years, mutations in COl4A3/4/5, traditionally associated with Alport syndrome, are increasingly being reported. Despite the extensive genetic heterogeneity in FSGS, there is evidence that some of these genes converge onto common pathways. There are also reports of in-vivo models exploring apolipoprotein 1 biology, variants in which account for part of the increased risk of nondiabetic kidney disease in African-Americans. Finally, genetic testing has several clinical uses including clarification of diagnosis and treatment; identification of suitable young biologic relatives for kidney donation; and preimplantation genetic diagnosis. CRISPR gene editing is currently an experimental tool only, but the recent reports of excising mutations in embryos could be a therapeutic option for individuals with any monogenic disorder in the future. SUMMARY: Sequencing efforts are bringing novel variants into investigation and directing the efforts to understand how these lead to disease phenotypes. Expanding our understanding of the genetic basis of health and disease processes is the necessary first step to elaborate the repertoire of therapeutic agents available for patients with FSGS and nephrotic syndrome.


Assuntos
Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Apolipoproteína L1/genética , Colágeno Tipo IV/genética , Testes Genéticos , Glomerulosclerose Segmentar e Focal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Mutação , Síndrome Nefrótica/genética , Fenótipo
7.
Am J Kidney Dis ; 71(3): 441-445, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29198386

RESUMO

Alport syndrome is a rare hereditary disorder caused by rare variants in 1 of 3 genes encoding for type IV collagen. Rare variants in COL4A5 on chromosome Xq22 cause X-linked Alport syndrome, which accounts for ∼80% of the cases. Alport syndrome has a variable clinical presentation, including progressive kidney failure, hearing loss, and ocular defects. Exome sequencing performed in 2 affected related males with an undefined X-linked glomerulopathy characterized by global and segmental glomerulosclerosis, mesangial hypercellularity, and vague basement membrane immune complex deposition revealed a COL4A5 sequence variant, a substitution of a thymine by a guanine at nucleotide 665 (c.T665G; rs281874761) of the coding DNA predicted to lead to a cysteine to phenylalanine substitution at amino acid 222, which was not seen in databases cataloguing natural human genetic variation, including dbSNP138, 1000 Genomes Project release version 01-11-2004, Exome Sequencing Project 21-06-2014, or ExAC 01-11-2014. Review of the literature identified 2 additional families with the same COL4A5 variant leading to similar atypical histopathologic features, suggesting a unique pathologic mechanism initiated by this specific rare variant. Homology modeling suggests that the substitution alters the structural and dynamic properties of the type IV collagen trimer. Genetic analysis comparing members of the 3 families indicated a distant relationship with a shared haplotype, implying a founder effect.


Assuntos
Colágeno Tipo IV/genética , Predisposição Genética para Doença , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Linhagem , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Biópsia por Agulha , Análise Mutacional de DNA , Seguimentos , Efeito Fundador , Testes Genéticos/métodos , Variação Genética , Humanos , Imuno-Histoquímica , Masculino , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/tratamento farmacológico , Medição de Risco , Índice de Gravidade de Doença , Esteroides/uso terapêutico , Adulto Jovem
8.
J Am Soc Nephrol ; 25(9): 1942-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676634

RESUMO

FSGS is characterized by the presence of partial sclerosis of some but not all glomeruli. Studies of familial FSGS have been instrumental in identifying podocytes as critical elements in maintaining glomerular function, but underlying mutations have not been identified for all forms of this genetically heterogeneous condition. Here, exome sequencing in members of an index family with dominant FSGS revealed a nonconservative, disease-segregating variant in the PAX2 transcription factor gene. Sequencing in probands of a familial FSGS cohort revealed seven rare and private heterozygous single nucleotide substitutions (4% of individuals). Further sequencing revealed seven private missense variants (8%) in a cohort of individuals with congenital abnormalities of the kidney and urinary tract. As predicted by in silico structural modeling analyses, in vitro functional studies documented that several of the FSGS-associated PAX2 mutations perturb protein function by affecting proper binding to DNA and transactivation activity or by altering the interaction of PAX2 with repressor proteins, resulting in enhanced repressor activity. Thus, mutations in PAX2 may contribute to adult-onset FSGS in the absence of overt extrarenal manifestations. These results expand the phenotypic spectrum associated with PAX2 mutations, which have been shown to lead to congenital abnormalities of the kidney and urinary tract as part of papillorenal syndrome. Moreover, these results indicate PAX2 mutations can cause disease through haploinsufficiency and dominant negative effects, which could have implications for tailoring individualized drug therapy in the future.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Mutação , Fator de Transcrição PAX2/genética , Adolescente , Adulto , Idade de Início , Idoso , Sequência de Aminoácidos , Sequência de Bases , Estudos de Coortes , Simulação por Computador , Sequência Conservada , Análise Mutacional de DNA , Exoma , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fator de Transcrição PAX2/química , Fator de Transcrição PAX2/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Eletricidade Estática , Anormalidades Urogenitais , Refluxo Vesicoureteral/genética , Adulto Jovem
9.
J Am Soc Nephrol ; 25(9): 1991-2002, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676636

RESUMO

FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1-associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm-associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Animais , Movimento Celular/genética , Sequência Conservada , Proteínas Contráteis/genética , Proteínas do Citoesqueleto/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Exoma , Feminino , Técnicas de Silenciamento de Genes , Barreira de Filtração Glomerular/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Mutantes/genética , Linhagem , Podócitos/metabolismo , Homologia de Sequência de Aminoácidos , Regulação para Cima , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Kidney Int ; 85(5): 1030-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599252

RESUMO

The haploid human genome is composed of three billion base pairs, about one percent of which consist of exonic regions, the coding sequence for functional proteins, also now known as the 'exome'. The development of next-generation sequencing makes it possible from a technical and economic standpoint to sequence an individual's exome but at the cost of generating long lists of gene variants that are not straightforward to interpret. Various public consortiums such as the 1000 Genomes Project and the NHLBI Exome Sequencing Project have sequenced the exomes and a subset of entire genomes of over 2500 control individuals with ongoing efforts to further catalog genetic variation in humans.(1) The use of these public databases facilitates the interpretation of these variant lists produced by exome sequencing and, as a result, novel genetic variants linked to the disease are being discovered and reported at a record rate. However, the interpretation of these results and their bearing on diagnosis, prognosis, and treatment is becoming even more complicated. Here, we discuss the application of genetic testing to individuals with focal and segmental glomerulosclerosis (FSGS), taking a historical perspective on gene identification and its clinical implications along with the growing potential of next-generation sequencing.


Assuntos
Análise Mutacional de DNA , Testes Genéticos/métodos , Glomerulosclerose Segmentar e Focal/genética , Mutação , Síndrome Nefrótica/genética , Negro ou Afro-Americano/genética , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/etnologia , Glomerulosclerose Segmentar e Focal/terapia , Humanos , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/etnologia , Síndrome Nefrótica/terapia , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
11.
Kidney Int ; 85(1): 124-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24048372

RESUMO

Our understanding of focal and segmental glomerulosclerosis (FSGS) has advanced significantly from the studies of rare, monogenic forms of the disease. These studies have demonstrated the critical roles of multiple aspects of podocyte function in maintaining glomerular function. A substantial body of research has suggested that the integral membrane protein podocalyxin (PODXL) is required for proper functioning of podocytes, possibly by preserving the patency of the slit diaphragm by negative charge-based repulsion. Exome sequencing of affected cousins from an autosomal dominant pedigree with FSGS identified a cosegregating private variant, PODXL p.L442R, affecting the transmembrane region of the protein. Of the remaining 11 shared gene variants, two segregated with disease, but their gene products were not detected in the glomerulus. In comparison with wild type, this disease-segregating PODXL variant facilitated dimerization. By contrast, this change does not alter protein stability, extracellular domain glycosylation, cell surface expression, global subcellular localization, or interaction with its intracellular binding partner ezrin. Thus, a variant form of PODXL remains the most likely candidate causing FSGS in one family with autosomal dominant inheritance, but its full effect on protein function remains unknown. Our work highlights the challenge faced in the clinical interpretation of whole-exome data for small pedigrees with autosomal dominant diseases.


Assuntos
Exoma/genética , Glomerulosclerose Segmentar e Focal/genética , Sialoglicoproteínas/genética , Adolescente , Adulto , Animais , Criança , Cães , Feminino , Genes Dominantes , Variação Genética , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Pessoa de Meia-Idade , Coelhos , Ratos , Análise de Sequência de DNA , Adulto Jovem
12.
Kidney Int ; 83(2): 316-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23014460

RESUMO

Mutations in the inverted formin 2 gene (INF2) have recently been identified as the most common cause of autosomal dominant focal and segmental glomerulosclerosis (FSGS). To quantify the contribution of various genes contributing to FSGS, we sequenced INF2 where all mutations have previously been described (exons 2 to 5) in a total of 215 probands and 281 sporadic individuals with FSGS, along with other known genes accounting for autosomal dominant FSGS (ACTN4, TRPC6, and CD2AP) in 213 probands. Variants were classified as disease-causing if they altered the amino acid sequence and if they were not found in control samples and in families segregated with disease. Mutations in INF2 were found in a total of 20 of the 215 families (including those previously reported) in our cohort of autosomal dominant familial nephrotic syndrome or FSGS, thereby explaining disease in 9%. INF2 mutations were found in 2 of 281 individuals with sporadic FSGS. In contrast, ACTN4- and TRPC6-related diseases accounted for 3 and 2% of our familial cohort, respectively. INF2-related disease showed variable penetrance, with onset of disease ranging widely from childhood to adulthood, and commonly leading to end-stage renal disease in the third and fourth decade of life. Thus, mutations in INF2 are a more common, although still a minor, monogenic cause of familial FSGS when compared with other known autosomal dominant genes associated with FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Mutação , Actinina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Criança , Proteínas do Citoesqueleto/genética , Forminas , Humanos , Proteínas dos Microfilamentos/química , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
13.
Kidney Med ; 5(5): 100631, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37122389

RESUMO

Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.

14.
Sci Rep ; 13(1): 18084, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872228

RESUMO

Our GWAS of hematuria in the UK Biobank identified 6 loci, some of which overlap with loci for albuminuria suggesting pleiotropy. Since clinical syndromes are often defined by combinations of traits, generating a combined phenotype can improve power to detect loci influencing multiple characteristics. Thus the composite trait of hematuria and albuminuria was chosen to enrich for glomerular pathologies. Cases had both hematuria defined by ICD codes and albuminuria defined as uACR > 3 mg/mmol. Controls had neither an ICD code for hematuria nor an uACR > 3 mg/mmol. 2429 cases and 343,509 controls from the UK Biobank were included. eGFR was lower in cases compared to controls, with the exception of the comparison in females using CKD-EPI after age adjustment. Variants at 4 loci met genome-wide significance with the following nearest genes: COL4A4, TRIM27, ETV1 and CUBN. TRIM27 is part of the extended MHC locus. All loci with the exception of ETV1 were replicated in the Geisinger MyCode cohort. The previous GWAS of hematuria reported COL4A3-COL4A4 variants and HLA-B*0801 within MHC, which is in linkage disequilibrium with the TRIM27 variant (D' = 0.59). TRIM27 is highly expressed in the tubules. Additional loci included a coding sequence variant in CUBN (p.Ala2914Val, MAF = 0.014 (A), p = 3.29E-8, OR = 2.09, 95% CI = 1.61-2.72). Overall, GWAS for the composite trait of hematuria and albuminuria identified 4 loci, 2 of which were not previously identified in a GWAS of hematuria.


Assuntos
Estudo de Associação Genômica Ampla , Hematúria , Feminino , Humanos , Hematúria/genética , Albuminúria/genética , Fenótipo , Genes MHC Classe I , Polimorfismo de Nucleotídeo Único
15.
Kidney360 ; 3(3): 534-545, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35582169

RESUMO

Pathologists use multiple microscopy modalities to assess renal biopsy specimens. Besides usual diagnostic features, some changes are too subtle to be properly defined. Computational approaches have the potential to systematically quantitate subvisual clues, provide pathogenetic insight, and link to clinical outcomes. To this end, a proof-of-principle study is presented demonstrating that explainable biomarkers through machine learning can distinguish between glomerular disorders at the light-microscopy level. The proposed system used image analysis techniques and extracted 233 explainable biomarkers related to color, morphology, and microstructural texture. Traditional machine learning was then used to classify minimal change disease (MCD), membranous nephropathy (MN), and thin basement membrane nephropathy (TBMN) diseases on a glomerular and patient-level basis. The final model combined the Gini feature importance set and linear discriminant analysis classifier. Six morphologic (nuclei-to-glomerular tuft area, nuclei-to-glomerular area, glomerular tuft thickness greater than ten, glomerular tuft thickness greater than three, total glomerular tuft thickness, and glomerular circularity) and four microstructural texture features (luminal contrast using wavelets, nuclei energy using wavelets, nuclei variance using color vector LBP, and glomerular correlation using GLCM) were, together, the best performing biomarkers. Accuracies of 77% and 87% were obtained for glomerular and patient-level classification, respectively. Computational methods, using explainable glomerular biomarkers, have diagnostic value and are compatible with our existing knowledge of disease pathogenesis. Furthermore, this algorithm can be applied to clinical datasets for novel prognostic and mechanistic biomarker discovery.


Assuntos
Glomerulonefrite Membranosa , Nefrose Lipoide , Biomarcadores , Glomerulonefrite Membranosa/diagnóstico , Hematúria/patologia , Humanos , Glomérulos Renais/patologia , Nefrose Lipoide/diagnóstico
16.
Front Nephrol ; 2: 1007002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37675000

RESUMO

Introduction: When assessing kidney biopsies, pathologists use light microscopy, immunofluorescence, and electron microscopy to describe and diagnose glomerular lesions and diseases. These methods can be laborious, costly, fraught with inter-observer variability, and can have delays in turn-around time. Thus, computational approaches can be designed as screening and/or diagnostic tools, potentially relieving pathologist time, healthcare resources, while also having the ability to identify novel biomarkers, including subvisual features. Methods: Here, we implement our recently published biomarker feature extraction (BFE) model along with 3 pre-trained deep learning models (VGG16, VGG19, and InceptionV3) to diagnose 3 glomerular diseases using PAS-stained digital pathology images alone. The BFE model extracts a panel of 233 explainable features related to underlying pathology, which are subsequently narrowed down to 10 morphological and microstructural texture features for classification with a linear discriminant analysis machine learning classifier. 45 patient renal biopsies (371 glomeruli) from minimal change disease (MCD), membranous nephropathy (MN), and thin-basement membrane nephropathy (TBMN) were split into training/validation and held out sets. For the 3 deep learningmodels, data augmentation and Grad-CAM were used for better performance and interpretability. Results: The BFE model showed glomerular validation accuracy of 67.6% and testing accuracy of 76.8%. All deep learning approaches had higher validation accuracies (most for VGG16 at 78.5%) but lower testing accuracies. The highest testing accuracy at the glomerular level was VGG16 at 71.9%, while at the patient-level was InceptionV3 at 73.3%. Discussion: The results highlight the potential of both traditional machine learning and deep learning-based approaches for kidney biopsy evaluation.

17.
Clin J Am Soc Nephrol ; 17(5): 672-683, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35474271

RESUMO

BACKGROUND AND OBJECTIVES: Glomerular hematuria has varied causes but can have a genetic basis, including Alport syndrome and IgA nephropathy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We used summary statistics to identify genetic variants associated with hematuria in White British UK Biobank participants. Individuals with glomerular hematuria were enriched by excluding participants with genitourinary conditions. A strongly associated locus on chromosome 2 (COL4A4-COL4A3) was identified. The region was reimputed using the Trans-Omics for Precision Medicine Program followed by sequential rounds of regional conditional analysis, conditioning on previous genetic signals. Similarly, we applied conditional analysis to identify independent variants in the MHC region on chromosome 6 using imputed HLA haplotypes. RESULTS: In total, 16,866 hematuria cases and 391,420 controls were included. Cases had higher urinary albumin-creatinine compared with controls (women: 13.01 mg/g [8.05-21.33] versus 12.12 mg/g [7.61-19.29]; P<0.001; men: 8.85 mg/g [5.66-16.19] versus 7.52 mg/g [5.04-12.39]; P<0.001) and lower eGFR (women: 88±14 versus 90±13 ml/min per 1.72 m2; P<0.001; men: 87±15 versus 90±13 ml/min per 1.72 m2; P<0.001), supporting enrichment of glomerular hematuria. Variants at six loci (PDPN, COL4A4-COL4A3, HLA-B, SORL1, PLLP, and TGFB1) met genome-wide significance (P<5E-8). At chromosome 2, COL4A4 p.Ser969X (rs35138315; minor allele frequency=0.00035; P<7.95E-35; odds ratio, 87.3; 95% confidence interval, 47.9 to 159.0) had the most significant association, and two variants in the locus remained associated with hematuria after conditioning for this variant: COL4A3 p.Gly695Arg (rs200287952; minor allele frequency=0.00021; P<2.16E-7; odds ratio, 45.5; 95% confidence interval, 11.8 to 168.0) and a common COL4A4 intron 25 variant (not previously reported; rs58261427; minor allele frequency=0.214; P<2.00E-9; odds ratio, 1.09; 95% confidence interval, 1.06 to 1.12). Of the HLA haplotypes, HLA-B (*0801; minor allele frequency=0.14; P<4.41E-24; odds ratio, 0.84; 95% confidence interval, 0.82 to 0.88) displayed the most statistically significant association. For remaining loci, we identified three novel associations, which were replicated in the deCODE dataset for dipstick hematuria (nearest genes: PDPN, SORL1, and PLLP). CONCLUSIONS: Our study identifies six loci associated with hematuria, including independent variants in COL4A4-COL4A3 and HLA-B. Additionally, three novel loci are reported, including an association with an intronic variant in PDPN expressed in the podocyte. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_04_26_CJN13711021.mp3.


Assuntos
Hematúria , Nefrite Hereditária , Masculino , Humanos , Feminino , Hematúria/genética , Colágeno Tipo IV/genética , Estudo de Associação Genômica Ampla , Nefrite Hereditária/genética , Glomérulos Renais , Autoantígenos/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética
18.
Can J Kidney Health Dis ; 9: 20543581221089094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450151

RESUMO

Background: Glomerulonephritis (GN) is a leading cause of kidney failure and accounts for 20% of incident cases of end-stage kidney disease (ESKD) in Canada annually. Reversal of kidney injury and prevention of progression to kidney failure is possible; however, limited knowledge of underlying disease mechanisms and lack of noninvasive biomarkers and therapeutic targets are major barriers to successful therapeutic intervention. Multicenter approaches that link longitudinal clinical and outcomes data with serial biologic specimen collection would help bridge this gap. Objective: To establish a national, patient-centered, multidimensional web-based clinical database and federated virtual biobank to conduct human-based molecular and clinical research in GN in Canada. Design: Multicenter, prospective observational registry, starting in 2019. Setting: Nine participating Canadian tertiary care centers. Patients: Adult patients with a histopathologic pattern of injury consistent with IgA nephropathy, focal and segmental glomerulosclerosis, minimal change disease, membranous nephropathy, C3 glomerulopathy, and membranoproliferative GN recruited within 24 months of biopsy. Measurements: Initial visits include detailed clinical, histopathological, and laboratory data collection, blood, urine, and tonsil swab biospecimen collection, and a self-administered quality of life questionnaire. Follow-up clinical and laboratory data collection, biospecimen collection, and questionnaires are obtained every 6 months thereafter. Methods: Patients receive care as defined by their physician, with study visits scheduled every 6 months. Patients are followed until death, dialysis, transplantation, or withdrawal from the study. Key outcomes include a composite of ESKD or a 40% decline in estimated glomerular filtration rate (eGFR) at 2 years, rate of kidney function decline, and remission of proteinuria. Clinical and molecular phenotypical data will be analyzed by GN subtype to identify disease predictors and discover therapeutic targets. Limitations: Given the relative rarity of individual glomerular diseases, one of the major challenges is patient recruitment. Initial registry studies may be underpowered to detect small differences in clinically meaningful outcomes such as ESKD or death due to small sample sizes and short duration of follow-up in the initial 2-year phase of the study. Conclusions: The Canadian Glomerulonephritis Registry (CGNR) supports national collaborative efforts to study glomerular disease patients and their outcomes. Trial registration: NCT03460054.


Contexte: Les glomérulonéphrites (GN) sont des causes importantes d'insuffisance rénale; elles représentent 20 % des cas incidents d'insuffisance rénale terminale (IRT) au Canada chaque année. Inverser la néphropathie et prévenir la progression vers l'insuffisance rénale est possible, mais deux obstacles majeurs freinent la réussite de l'intervention thérapeutique: une compréhension limitée des mécanismes sous-jacents de la maladie, de même que l'absence de biomarqueurs non invasifs et de cibles thérapeutiques. Les approches multicentriques reliant les données cliniques longitudinales et les résultats de santé à la collecte d'échantillons biologiques en série permettraient de combler cette lacune. Objectif: Créer une base de données cliniques nationale en ligne, multidimensionnelle et axée sur le patient, de même qu'une biobanque virtuelle fédérée pour permettre de mener des recherches moléculaires et cliniques humaines sur les GN au Canada. Type d'étude: Registre d'observation prospectif multicentrique débuté en 2019. Cadre: Neuf centres de soins tertiaires canadiens. Sujets: Des patients adultes recrutés dans les 24 mois suivant la biopsie et présentant un profil histopathologique de lésion compatible avec une néphropathie à IgA, une hyalinose segmentaire et focale, une maladie à changement minime, une glomérulonéphrite extra-membraneuse, une glomérulopathie à C3 et une glomérulonéphrite membranoproliférative. Mesures: La première visite comporte une collecte détaillée des données cliniques, histopathologiques et de laboratoire, la collecte d'échantillons biologiques (sang, urine et écouvillonnage des amygdales), ainsi qu'un questionnaire autoadministré sur la qualité de vie. Pour le suivi, la collecte des données cliniques et de laboratoire, la collecte des échantillons biologiques et les questionnaires s'effectuent tous les six mois. Méthodologie: Les patients reçoivent des soins comme établi par leur médecin, et les visites d'étude sont programmées tous les six mois. Les patients sont suivis jusqu'au décès ou jusqu'à la dialyse, à la transplantation ou au retrait de l'étude. Un critère de jugement combiné (IRT, ou diminution de 40 % du débit de filtration glomérulaire estimé après deux ans), ainsi que le taux de déclin de la fonction rénale et la rémission de la protéinurie sont les principaux critères de jugement. Les données phénotypiques cliniques et moléculaires seront analysées par sous-types de GN afin d'identifier les prédicteurs de la maladie et de découvrir de nouvelles cibles thérapeutiques. Limites: Le recrutement des sujets demeure un des principaux défis puisque les maladies glomérulaires prises individuellement sont relativement rares. La faible taille des échantillons et la courte durée du suivi pendant les deux ans de la phase initiale de l'étude pourraient faire en sorte que les études initiales issues du registre ne soient pas assez puissantes pour détecter de légères différences dans les résultats cliniquement significatifs comme l'IRT ou le décès. Conclusion: Le Canadian Glomerulonephritis Registry (CGNR) appuie les efforts de collaboration nationale visant à étudier les patients atteints de maladies glomérulaires et leur évolution clinique. Enregistrement de l'essai: NCT03460054.

19.
Kidney Med ; 3(2): 257-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33851121

RESUMO

RATIONALE & OBJECTIVE: Pathogenic variants in type IV collagen have been reported to account for a significant proportion of chronic kidney disease. Accordingly, genetic testing is increasingly used to diagnose kidney diseases, but testing also may reveal rare missense variants that are of uncertain clinical significance. To aid in interpretation, computational prediction (called in silico) programs may be used to predict whether a variant is clinically important. We evaluate the performance of in silico programs for COL4A3/A4/A5 variants. STUDY DESIGN SETTING & PARTICIPANTS: Rare missense variants in COL4A3/A4/A5 were identified in disease cohorts, including a local focal segmental glomerulosclerosis (FSGS) cohort and publicly available disease databases, in which they are categorized as pathogenic or benign based on clinical criteria. TESTS COMPARED & OUTCOMES: All rare missense variants identified in the 4 disease cohorts were subjected to in silico predictions using 12 different programs. Comparisons between the predictions were compared with: (1) variant classification (pathogenic or benign) in the cohorts and (2) functional characterization in a randomly selected smaller number (17) of pathogenic or uncertain significance variants obtained from the local FSGS cohort. RESULTS: In silico predictions correctly classified 75% to 97% of pathogenic and 57% to 100% of benign COL4A3/A4/A5 variants in public disease databases. The congruency of in silico predictions was similar for variants categorized as pathogenic and benign, with the exception of benign COL4A5 variants, in which disease effects were overestimated. By contrast, in silico predictions and functional characterization classified all 9 pathogenic COL4A3/A4/A5 variants correctly that were obtained from a local FSGS cohort. However, these programs also overestimated the effects of genomic variants of uncertain significance when compared with functional characterization. Each of the 12 in silico programs used yielded similar results. LIMITATIONS: Overestimation of in silico program sensitivity given that they may have been used in the categorization of variants labeled as pathogenic in disease repositories. CONCLUSIONS: Our results suggest that in silico predictions are sensitive but not specific to assign COL4A3/A4/A5 variant pathogenicity, with misclassification of benign variants and variants of uncertain significance. Thus, we do not recommend in silico programs but instead recommend pursuing more objective levels of evidence suggested by medical genetics guidelines.

20.
J Am Soc Nephrol ; 20(8): 1833-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19443633

RESUMO

Mutations of PKD1 and PKD2 account for 85 and 15% of cases of autosomal dominant polycystic kidney disease (ADPKD), respectively. Clinically, PKD1 is more severe than PKD2, with a median age at ESRD of 53.4 versus 72.7 yr. In this study, we explored whether a family history of renal disease severity predicts the mutated gene in ADPKD. We examined the renal function (estimated GFR and age at ESRD) of 484 affected members from 90 families who had ADPKD and whose underlying genotype was known. We found that the presence of at least one affected family member who developed ESRD at age < or =55 was highly predictive of a PKD1 mutation (positive predictive value 100%; sensitivity 72%). In contrast, the presence of at least one affected family member who continued to have sufficient renal function or developed ESRD at age >70 was highly predictive of a PKD2 mutation (positive predictive value 100%; sensitivity 74%). These data suggest that close attention to the family history of renal disease severity in ADPKD may provide a simple means of predicting the mutated gene, which has prognostic implications.


Assuntos
Falência Renal Crônica/etiologia , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Mutacional de DNA , Humanos , Falência Renal Crônica/epidemiologia , Pessoa de Meia-Idade , Ontário/epidemiologia , Rim Policístico Autossômico Dominante/complicações , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA