Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(12): e1009192, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370414

RESUMO

Asymptomatic carriage of Salmonella Typhi continues to facilitate the transmission of typhoid fever, resulting in 14 million new infections and 136,000 fatalities each year. Asymptomatic chronic carriage of S. Typhi is facilitated by the formation of biofilms on gallstones that protect the bacteria from environmental insults and immune system clearance. Here, we identified two unique small molecules capable of both inhibiting Salmonella biofilm growth and disrupting pre-formed biofilm structures without affecting bacterial viability. In a mouse model of chronic gallbladder Salmonella carriage, treatment with either compound reduced bacterial burden in the gallbladder by 1-2 logs resulting in bacterial dissemination to peripheral organs that was associated with increased mortality. Co-administration of either compound with ciprofloxacin not only enhanced compound efficacy in the gallbladder by a further 1-1.5 logs for a total of 3-4.5 log reduction, but also prevented bacterial dissemination to peripheral organs. These data suggest a dual-therapy approach targeting both biofilm and planktonic populations can be further developed as a safe and efficient treatment of biofilm-mediated chronic S. Typhi infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Portador Sadio/microbiologia , Vesícula Biliar/microbiologia , Salmonelose Animal , Salmonella typhi/efeitos dos fármacos , Animais , Infecções Assintomáticas , Camundongos , Febre Tifoide
2.
Nat Prod Rep ; 37(11): 1454-1477, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32608431

RESUMO

Natural products have historically been a rich source of diverse chemical matter with numerous biological activities, and have played an important role in drug discovery in many areas including infectious disease. Synthetic and medicinal chemistry have been, and continue to be, important tools to realize the potential of natural products as therapeutics and as chemical probes. The formation of biofilms by bacteria in an infection setting is a significant factor in the recalcitrance of many bacterial infections, conferring increased tolerance to many antibiotics and to the host immune response, and as yet there are no approved therapeutics for combatting biofilm-based bacterial infections. Small molecules that interfere with the ability of bacteria to form and maintain biofilms can overcome antibiotic tolerance conferred by the biofilm phenotype, and have the potential to form combination therapies with conventional antibiotics. Many natural products with anti-biofilm activity have been identified from plants, microbes, and marine life, including: elligic acid glycosides, hamamelitannin, carolacton, skyllamycins, promysalin, phenazines, bromoageliferin, flustramine C, meridianin D, and brominated furanones. Total synthesis and medicinal chemistry programs have facilitated structure confirmation, identification of critical structural motifs, better understanding of mechanistic pathways, and the development of more potent, more accessible, or more pharmacologically favorable derivatives of anti-biofilm natural products.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Plantas/química
3.
Amino Acids ; 45(1): 159-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23553487

RESUMO

N-Acylbenzotriazoles enable the synthesis (69-92% yield) of blue to green fluorescent coumarin-labeled depsidipeptides 8a-f (quantum yields 0.004-0.97) and depsitripeptides 12a-d (quantum yields 0.02-0.96). Detailed photophysical studies of fluorescent coumarin-labeled depsipeptides 8a-f and 12a-d are reported for both polar protic and polar aprotic solvents. 7-Methoxy and 7-diethylaminocoumarin-3-ylcarbonyl depsipeptides 8c,f and 12d are highly solvent sensitive. These highly fluorescent compounds could be useful for peptide assays. Further photophysical studies of 7-diethylaminocoumarin-labeled depsipeptides 8c,12d within the micellar microenvironment of SDS reflect their ability to bind with the biological membrane, suggesting potential applications in the fields of bio- and medicinal chemistry.


Assuntos
Cumarínicos/química , Depsipeptídeos/química , Depsipeptídeos/síntese química , Corantes Fluorescentes/síntese química , Dodecilsulfato de Sódio/química , Micelas , Espectrometria de Fluorescência , Coloração e Rotulagem
4.
ChemMedChem ; 15(2): 210-218, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31756025

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global health threat. Often clinicians are forced to administer the last-resort antibiotic colistin; however, colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics. We recently disclosed that the known IKK-ß inhibitor IMD-0354 potently suppresses colistin resistance in several Gram-negative strains. In this study, we explore the structure-activity relationship (SAR) between the IMD-0354 scaffold and colistin resistance suppression, and identify several compounds with more potent activity than the parent against highly colistin-resistant strains of Acinetobacter baumannii and Klebsiella pneumoniae.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Adjuvantes Farmacêuticos/farmacologia , Antibacterianos/farmacologia , Benzamidas/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Adjuvantes Farmacêuticos/síntese química , Adjuvantes Farmacêuticos/química , Antibacterianos/síntese química , Antibacterianos/química , Benzamidas/síntese química , Benzamidas/química , Colistina/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
5.
ACS Infect Dis ; 5(10): 1764-1771, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434474

RESUMO

Kinase inhibitors comprise a diverse cohort of chemical scaffolds that are active in multiple biological systems. Currently, thousands of eukaryotic kinase inhibitors are commercially available, have well-characterized targets, and often carry pharmaceutically favorable toxicity profiles. Recently, our group disclosed that derivatives of the natural product meridianin D, a known inhibitor of eukaryotic kinases, modulated behaviors of both Gram-positive and Gram-negative bacteria. Herein, we expand our exploration of kinase inhibitors in Gram-negative bacilli utilizing three commercially available kinase inhibitor libraries and, ultimately, identify two chemical structures that potentiate colistin (polymyxin E) in multiple strains. We report IMD-0354, an inhibitor of IKK-ß, as a markedly effective adjuvant in colistin-resistant bacteria and also describe AR-12 (OSU-03012), an inhibitor of pyruvate dehydrogenase kinase-1 (PDK-1), as a potentiator in colistin-sensitive strains. This report comprises the first description of the novel cross-reactivity of these molecules.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Colistina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Adjuvantes Farmacêuticos/química , Benzamidas/farmacologia , Linhagem Celular , Colistina/química , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Eucariotos , Bactérias Gram-Positivas/efeitos dos fármacos , Quinase I-kappa B/efeitos dos fármacos , Lipídeo A , Testes de Sensibilidade Microbiana , Pirazóis/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/efeitos dos fármacos , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA