Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186701, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977621

RESUMO

The Fe intercalated transition metal dichalcogenide (TMD), Fe_{1/3}NbS_{2}, exhibits remarkable resistance switching properties and highly tunable spin ordering phases due to magnetic defects. We conduct synchrotron x-ray scattering measurements on both underintercalated (x=0.32) and overintercalated (x=0.35) samples. We discover a new charge order phase in the overintercalated sample, where the excess Fe atoms lead to a zigzag antiferromagnetic order. The agreement between the charge and magnetic ordering temperatures, as well as their intensity relationship, suggests a strong magnetoelastic coupling as the mechanism for the charge ordering. Our results reveal the first example of a charge order phase among the intercalated TMD family and demonstrate the ability to stabilize charge modulation by introducing electronic correlations, where the charge order is absent in bulk 2H-NbS_{2} compared to other pristine TMDs.

2.
Phys Rev Lett ; 126(13): 136401, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861118

RESUMO

Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic properties of magnetically alloyed Sm_{1-x}M_{x}B_{6} (M=Ce, Eu), using angle-resolved photoemission spectroscopy and complementary characterization techniques. Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly modified samples with up to 30% Sm substitution and with an antiferromagnetic ground state in the case of Eu doping. The results are interpreted in terms of a hierarchy of energy scales, in which surface state emergence is linked to the formation of a direct Kondo gap, while low-temperature transport trends depend on the indirect gap.

3.
Nat Commun ; 15(1): 3913, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724558

RESUMO

Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.

4.
Sci Adv ; 9(29): eadg3710, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467326

RESUMO

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the qx-qy scattering plane in underdoped Bi2Sr2CaCu2O8+δ. Tracking the softening of the RIXS-measured bond-stretching phonon, we show that these dynamic correlations exist at energies below approximately 70 meV and are centered around a quasi-circular manifold in the qx-qy scattering plane with radius equal to the magnitude of the charge order wave vector, qCO. This phonon-tracking procedure also allows us to rule out fluctuations of short-range directional charge order (i.e., centered around [qx = ±qCO, qy = 0] and [qx = 0, qy = ±qCO]) as the origin of the observed correlations.

5.
Sci Adv ; 8(29): eabn6882, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857841

RESUMO

The detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering. We study the onset of the antiferromagnet transition in PrNiO3, focusing on a temperature regime in which the antiferromagnetic domains are dilute in the beam spot and the coherent diffraction pattern modulating the antiferromagnetic peak is greatly simplified. We demonstrate that it is possible to extract the arrangements and sizes of these domains from single diffraction patterns and show that the approach could be extended to a time-structured light source to study the motion of dilute domains or the motion of topological defects in an antiferromagnetic spin texture.

6.
Nat Commun ; 13(1): 6197, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261435

RESUMO

The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the [Formula: see text] orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu L3 and Pr M5 resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Pr f-electrons create a direct orbital bridge between CuO2 planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.

7.
Nat Commun ; 10(1): 644, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733441

RESUMO

Uranium compounds can manifest a wide range of fascinating many-body phenomena, and are often thought to be poised at a crossover between localized and itinerant regimes for 5f electrons. The antiferromagnetic dipnictide USb2 has been of recent interest due to the discovery of rich proximate phase diagrams and unusual quantum coherence phenomena. Here, linear-dichroic X-ray absorption and elastic neutron scattering are used to characterize electronic symmetries on uranium in USb2 and isostructural UBi2. Of these two materials, only USb2 is found to enable strong Hund's rule alignment of local magnetic degrees of freedom, and to undergo distinctive changes in local atomic multiplet symmetry across the magnetic phase transition. Theoretical analysis reveals that these and other anomalous properties of the material may be understood by attributing it as the first known high temperature realization of a singlet ground state magnet, in which magnetism occurs through a process that resembles exciton condensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA